Metamath Proof Explorer


Theorem hvpncan

Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion hvpncan A B A + B - B = A

Proof

Step Hyp Ref Expression
1 hvaddcl A B A + B
2 hvsubval A + B B A + B - B = A + B + -1 B
3 1 2 sylancom A B A + B - B = A + B + -1 B
4 neg1cn 1
5 hvmulcl 1 B -1 B
6 4 5 mpan B -1 B
7 6 ancli B B -1 B
8 ax-hvass A B -1 B A + B + -1 B = A + B + -1 B
9 8 3expb A B -1 B A + B + -1 B = A + B + -1 B
10 7 9 sylan2 A B A + B + -1 B = A + B + -1 B
11 hvnegid B B + -1 B = 0
12 11 oveq2d B A + B + -1 B = A + 0
13 ax-hvaddid A A + 0 = A
14 12 13 sylan9eqr A B A + B + -1 B = A
15 3 10 14 3eqtrd A B A + B - B = A