Metamath Proof Explorer


Theorem hvsubaddi

Description: Relationship between vector subtraction and addition. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvnegdi.1 A
hvnegdi.2 B
hvaddcan.3 C
Assertion hvsubaddi A - B = C B + C = A

Proof

Step Hyp Ref Expression
1 hvnegdi.1 A
2 hvnegdi.2 B
3 hvaddcan.3 C
4 1 2 hvsubvali A - B = A + -1 B
5 4 eqeq1i A - B = C A + -1 B = C
6 neg1cn 1
7 6 2 hvmulcli -1 B
8 2 1 7 hvadd12i B + A + -1 B = A + B + -1 B
9 2 hvnegidi B + -1 B = 0
10 9 oveq2i A + B + -1 B = A + 0
11 ax-hvaddid A A + 0 = A
12 1 11 ax-mp A + 0 = A
13 8 10 12 3eqtri B + A + -1 B = A
14 13 eqeq1i B + A + -1 B = B + C A = B + C
15 1 7 hvaddcli A + -1 B
16 2 15 3 hvaddcani B + A + -1 B = B + C A + -1 B = C
17 eqcom A = B + C B + C = A
18 14 16 17 3bitr3i A + -1 B = C B + C = A
19 5 18 bitri A - B = C B + C = A