Metamath Proof Explorer


Theorem hvsubcan

Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvsubcan A B C A - B = A - C B = C

Proof

Step Hyp Ref Expression
1 hvsubval A B A - B = A + -1 B
2 1 3adant3 A B C A - B = A + -1 B
3 hvsubval A C A - C = A + -1 C
4 3 3adant2 A B C A - C = A + -1 C
5 2 4 eqeq12d A B C A - B = A - C A + -1 B = A + -1 C
6 neg1cn 1
7 hvmulcl 1 B -1 B
8 6 7 mpan B -1 B
9 hvmulcl 1 C -1 C
10 6 9 mpan C -1 C
11 hvaddcan A -1 B -1 C A + -1 B = A + -1 C -1 B = -1 C
12 10 11 syl3an3 A -1 B C A + -1 B = A + -1 C -1 B = -1 C
13 8 12 syl3an2 A B C A + -1 B = A + -1 C -1 B = -1 C
14 neg1ne0 1 0
15 6 14 pm3.2i 1 1 0
16 hvmulcan 1 1 0 B C -1 B = -1 C B = C
17 15 16 mp3an1 B C -1 B = -1 C B = C
18 17 3adant1 A B C -1 B = -1 C B = C
19 5 13 18 3bitrd A B C A - B = A - C B = C