Metamath Proof Explorer


Theorem hvsubcan2i

Description: Vector cancellation law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvnegdi.1 A
hvnegdi.2 B
Assertion hvsubcan2i A + B + A - B = 2 A

Proof

Step Hyp Ref Expression
1 hvnegdi.1 A
2 hvnegdi.2 B
3 1 2 hvsubvali A - B = A + -1 B
4 3 oveq2i A + B + A - B = A + B + A + -1 B
5 neg1cn 1
6 5 2 hvmulcli -1 B
7 1 2 1 6 hvadd4i A + B + A + -1 B = A + A + B + -1 B
8 hv2times A 2 A = A + A
9 1 8 ax-mp 2 A = A + A
10 9 eqcomi A + A = 2 A
11 2 hvnegidi B + -1 B = 0
12 10 11 oveq12i A + A + B + -1 B = 2 A + 0
13 7 12 eqtri A + B + A + -1 B = 2 A + 0
14 2cn 2
15 14 1 hvmulcli 2 A
16 ax-hvaddid 2 A 2 A + 0 = 2 A
17 15 16 ax-mp 2 A + 0 = 2 A
18 13 17 eqtri A + B + A + -1 B = 2 A
19 4 18 eqtri A + B + A - B = 2 A