Metamath Proof Explorer


Theorem hvsubcl

Description: Closure of vector subtraction. (Contributed by NM, 17-Aug-1999) (New usage is discouraged.)

Ref Expression
Assertion hvsubcl A B A - B

Proof

Step Hyp Ref Expression
1 hvsubval A B A - B = A + -1 B
2 neg1cn 1
3 hvmulcl 1 B -1 B
4 2 3 mpan B -1 B
5 hvaddcl A -1 B A + -1 B
6 4 5 sylan2 A B A + -1 B
7 1 6 eqeltrd A B A - B