Metamath Proof Explorer


Theorem hvsubeq0i

Description: If the difference between two vectors is zero, they are equal. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvnegdi.1 A
hvnegdi.2 B
Assertion hvsubeq0i A - B = 0 A = B

Proof

Step Hyp Ref Expression
1 hvnegdi.1 A
2 hvnegdi.2 B
3 1 2 hvsubvali A - B = A + -1 B
4 3 eqeq1i A - B = 0 A + -1 B = 0
5 oveq1 A + -1 B = 0 A + -1 B + B = 0 + B
6 4 5 sylbi A - B = 0 A + -1 B + B = 0 + B
7 neg1cn 1
8 7 2 hvmulcli -1 B
9 1 8 2 hvadd32i A + -1 B + B = A + B + -1 B
10 1 2 8 hvassi A + B + -1 B = A + B + -1 B
11 2 hvnegidi B + -1 B = 0
12 11 oveq2i A + B + -1 B = A + 0
13 ax-hvaddid A A + 0 = A
14 1 13 ax-mp A + 0 = A
15 12 14 eqtri A + B + -1 B = A
16 10 15 eqtri A + B + -1 B = A
17 9 16 eqtri A + -1 B + B = A
18 2 hvaddid2i 0 + B = B
19 6 17 18 3eqtr3g A - B = 0 A = B
20 oveq1 A = B A - B = B - B
21 hvsubid B B - B = 0
22 2 21 ax-mp B - B = 0
23 20 22 eqtrdi A = B A - B = 0
24 19 23 impbii A - B = 0 A = B