Metamath Proof Explorer


Theorem hvsubf

Description: Mapping domain and codomain of vector subtraction. (Contributed by NM, 6-Sep-2007) (New usage is discouraged.)

Ref Expression
Assertion hvsubf - : ×

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 hvmulcl 1 y -1 y
3 1 2 mpan y -1 y
4 hvaddcl x -1 y x + -1 y
5 3 4 sylan2 x y x + -1 y
6 5 rgen2 x y x + -1 y
7 df-hvsub - = x , y x + -1 y
8 7 fmpo x y x + -1 y - : ×
9 6 8 mpbi - : ×