Metamath Proof Explorer


Theorem hvsubval

Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion hvsubval A B A - B = A + -1 B

Proof

Step Hyp Ref Expression
1 oveq1 x = A x + -1 y = A + -1 y
2 oveq2 y = B -1 y = -1 B
3 2 oveq2d y = B A + -1 y = A + -1 B
4 df-hvsub - = x , y x + -1 y
5 ovex A + -1 B V
6 1 3 4 5 ovmpo A B A - B = A + -1 B