Step |
Hyp |
Ref |
Expression |
1 |
|
hypcgr.p |
|
2 |
|
hypcgr.m |
|
3 |
|
hypcgr.i |
|
4 |
|
hypcgr.g |
|
5 |
|
hypcgr.h |
|
6 |
|
hypcgr.a |
|
7 |
|
hypcgr.b |
|
8 |
|
hypcgr.c |
|
9 |
|
hypcgr.d |
|
10 |
|
hypcgr.e |
|
11 |
|
hypcgr.f |
|
12 |
|
hypcgr.1 |
|
13 |
|
hypcgr.2 |
|
14 |
|
hypcgr.3 |
|
15 |
|
hypcgr.4 |
|
16 |
|
hypcgrlem2.b |
|
17 |
|
hypcgrlem1.s |
|
18 |
|
hypcgrlem1.a |
|
19 |
4
|
adantr |
|
20 |
8
|
adantr |
|
21 |
6
|
adantr |
|
22 |
11
|
adantr |
|
23 |
9
|
adantr |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
1 2 3 24 25 4 6 7 8 12
|
ragcom |
|
27 |
1 2 3 24 25 4 8 7 6
|
israg |
|
28 |
26 27
|
mpbid |
|
29 |
28
|
adantr |
|
30 |
18
|
eqcomd |
|
31 |
30
|
adantr |
|
32 |
1 2 3 4 5 6 9 25 7
|
ismidb |
|
33 |
32
|
biimpar |
|
34 |
31 33
|
oveq12d |
|
35 |
29 34
|
eqtr4d |
|
36 |
1 2 3 19 20 21 22 23 35
|
tgcgrcomlr |
|
37 |
|
simpr |
|
38 |
18
|
ad2antrr |
|
39 |
37 38
|
oveq12d |
|
40 |
12
|
ad2antrr |
|
41 |
4
|
ad2antrr |
|
42 |
6
|
ad2antrr |
|
43 |
7
|
ad2antrr |
|
44 |
8
|
ad2antrr |
|
45 |
1 2 3 24 25 41 42 43 44
|
israg |
|
46 |
40 45
|
mpbid |
|
47 |
5
|
ad2antrr |
|
48 |
9
|
ad2antrr |
|
49 |
1 2 3 41 47 42 48
|
midcl |
|
50 |
|
simplr |
|
51 |
1 3 24 41 49 43 50
|
tgelrnln |
|
52 |
|
eqid |
|
53 |
|
eqid |
|
54 |
1 2 3 24 25 41 43 52 44
|
mircl |
|
55 |
|
simpr |
|
56 |
1 2 3 41 47 42 48
|
midbtwn |
|
57 |
1 24 3 41 42 49 48 56
|
btwncolg3 |
|
58 |
|
eqidd |
|
59 |
58 16 18
|
s3eqd |
|
60 |
59
|
ad2antrr |
|
61 |
13
|
ad2antrr |
|
62 |
60 61
|
eqeltrd |
|
63 |
1 2 3 24 25 41 48 43 44
|
israg |
|
64 |
62 63
|
mpbid |
|
65 |
1 24 3 41 42 48 49 53 44 54 2 55 57 46 64
|
lncgr |
|
66 |
1 2 3 24 25 41 49 43 44
|
israg |
|
67 |
65 66
|
mpbird |
|
68 |
1 3 24 41 49 43 50
|
tglinerflx1 |
|
69 |
1 3 24 41 49 43 50
|
tglinerflx2 |
|
70 |
1 2 3 41 47 17 24 51 49 52 67 68 69 44 50
|
lmimid |
|
71 |
70
|
oveq2d |
|
72 |
46 71
|
eqtr4d |
|
73 |
1 2 3 41 47 48 42
|
midcom |
|
74 |
73 68
|
eqeltrd |
|
75 |
55
|
necomd |
|
76 |
1 3 24 41 48 42 75
|
tgelrnln |
|
77 |
1 2 3 41 42 49 48 56
|
tgbtwncom |
|
78 |
1 3 24 41 48 42 49 75 77
|
btwnlng1 |
|
79 |
68 78
|
elind |
|
80 |
1 3 24 41 48 42 75
|
tglinerflx2 |
|
81 |
50
|
necomd |
|
82 |
4
|
ad2antrr |
|
83 |
6
|
ad2antrr |
|
84 |
9
|
ad2antrr |
|
85 |
5
|
ad2antrr |
|
86 |
|
simpr |
|
87 |
86
|
eqcomd |
|
88 |
1 2 3 82 85 83 84 87
|
midcgr |
|
89 |
88
|
eqcomd |
|
90 |
1 2 3 82 83 84 83 89
|
axtgcgrid |
|
91 |
90
|
ex |
|
92 |
91
|
necon3d |
|
93 |
92
|
imp |
|
94 |
1 2 3 4 6 7 9 10 14
|
tgcgrcomlr |
|
95 |
16
|
oveq1d |
|
96 |
94 95
|
eqtr4d |
|
97 |
96
|
ad2antrr |
|
98 |
|
eqidd |
|
99 |
1 2 3 41 47 42 48 25 49
|
ismidb |
|
100 |
98 99
|
mpbird |
|
101 |
100
|
oveq2d |
|
102 |
97 101
|
eqtrd |
|
103 |
1 2 3 24 25 41 43 49 42
|
israg |
|
104 |
102 103
|
mpbird |
|
105 |
1 2 3 24 41 51 76 79 69 80 81 93 104
|
ragperp |
|
106 |
105
|
orcd |
|
107 |
1 2 3 41 47 17 24 51 48 42
|
islmib |
|
108 |
74 106 107
|
mpbir2and |
|
109 |
108
|
oveq1d |
|
110 |
1 2 3 41 47 17 24 51 48 44
|
lmiiso |
|
111 |
18
|
oveq2d |
|
112 |
111
|
ad2antrr |
|
113 |
109 110 112
|
3eqtrd |
|
114 |
72 113
|
eqtrd |
|
115 |
39 114
|
pm2.61dane |
|
116 |
36 115
|
pm2.61dane |
|