Metamath Proof Explorer


Theorem hypcgrlem2

Description: Lemma for hypcgr , case where triangles share one vertex B . (Contributed by Thierry Arnoux, 16-Dec-2019)

Ref Expression
Hypotheses hypcgr.p P = Base G
hypcgr.m - ˙ = dist G
hypcgr.i I = Itv G
hypcgr.g φ G 𝒢 Tarski
hypcgr.h φ G Dim 𝒢 2
hypcgr.a φ A P
hypcgr.b φ B P
hypcgr.c φ C P
hypcgr.d φ D P
hypcgr.e φ E P
hypcgr.f φ F P
hypcgr.1 φ ⟨“ ABC ”⟩ 𝒢 G
hypcgr.2 φ ⟨“ DEF ”⟩ 𝒢 G
hypcgr.3 φ A - ˙ B = D - ˙ E
hypcgr.4 φ B - ˙ C = E - ˙ F
hypcgrlem2.b φ B = E
hypcgrlem2.s S = lInv 𝒢 G C mid 𝒢 G F Line 𝒢 G B
Assertion hypcgrlem2 φ A - ˙ C = D - ˙ F

Proof

Step Hyp Ref Expression
1 hypcgr.p P = Base G
2 hypcgr.m - ˙ = dist G
3 hypcgr.i I = Itv G
4 hypcgr.g φ G 𝒢 Tarski
5 hypcgr.h φ G Dim 𝒢 2
6 hypcgr.a φ A P
7 hypcgr.b φ B P
8 hypcgr.c φ C P
9 hypcgr.d φ D P
10 hypcgr.e φ E P
11 hypcgr.f φ F P
12 hypcgr.1 φ ⟨“ ABC ”⟩ 𝒢 G
13 hypcgr.2 φ ⟨“ DEF ”⟩ 𝒢 G
14 hypcgr.3 φ A - ˙ B = D - ˙ E
15 hypcgr.4 φ B - ˙ C = E - ˙ F
16 hypcgrlem2.b φ B = E
17 hypcgrlem2.s S = lInv 𝒢 G C mid 𝒢 G F Line 𝒢 G B
18 4 adantr φ C mid 𝒢 G F = B G 𝒢 Tarski
19 5 adantr φ C mid 𝒢 G F = B G Dim 𝒢 2
20 6 adantr φ C mid 𝒢 G F = B A P
21 7 adantr φ C mid 𝒢 G F = B B P
22 8 adantr φ C mid 𝒢 G F = B C P
23 eqid Line 𝒢 G = Line 𝒢 G
24 eqid pInv 𝒢 G = pInv 𝒢 G
25 eqid pInv 𝒢 G B = pInv 𝒢 G B
26 9 adantr φ C mid 𝒢 G F = B D P
27 1 2 3 23 24 18 21 25 26 mircl φ C mid 𝒢 G F = B pInv 𝒢 G B D P
28 10 adantr φ C mid 𝒢 G F = B E P
29 12 adantr φ C mid 𝒢 G F = B ⟨“ ABC ”⟩ 𝒢 G
30 eqidd φ C mid 𝒢 G F = B pInv 𝒢 G B D = pInv 𝒢 G B D
31 16 adantr φ C mid 𝒢 G F = B B = E
32 1 2 3 23 24 18 21 25 28 mirinv φ C mid 𝒢 G F = B pInv 𝒢 G B E = E B = E
33 31 32 mpbird φ C mid 𝒢 G F = B pInv 𝒢 G B E = E
34 33 eqcomd φ C mid 𝒢 G F = B E = pInv 𝒢 G B E
35 11 adantr φ C mid 𝒢 G F = B F P
36 1 2 3 18 19 22 35 midcom φ C mid 𝒢 G F = B C mid 𝒢 G F = F mid 𝒢 G C
37 simpr φ C mid 𝒢 G F = B C mid 𝒢 G F = B
38 36 37 eqtr3d φ C mid 𝒢 G F = B F mid 𝒢 G C = B
39 1 2 3 18 19 35 22 24 21 ismidb φ C mid 𝒢 G F = B C = pInv 𝒢 G B F F mid 𝒢 G C = B
40 38 39 mpbird φ C mid 𝒢 G F = B C = pInv 𝒢 G B F
41 30 34 40 s3eqd φ C mid 𝒢 G F = B ⟨“ pInv 𝒢 G B D EC ”⟩ = ⟨“ pInv 𝒢 G B D pInv 𝒢 G B E pInv 𝒢 G B F ”⟩
42 13 adantr φ C mid 𝒢 G F = B ⟨“ DEF ”⟩ 𝒢 G
43 1 2 3 23 24 18 26 28 35 42 25 21 mirrag φ C mid 𝒢 G F = B ⟨“ pInv 𝒢 G B D pInv 𝒢 G B E pInv 𝒢 G B F ”⟩ 𝒢 G
44 41 43 eqeltrd φ C mid 𝒢 G F = B ⟨“ pInv 𝒢 G B D EC ”⟩ 𝒢 G
45 14 adantr φ C mid 𝒢 G F = B A - ˙ B = D - ˙ E
46 1 2 3 23 24 18 21 25 26 28 miriso φ C mid 𝒢 G F = B pInv 𝒢 G B D - ˙ pInv 𝒢 G B E = D - ˙ E
47 33 oveq2d φ C mid 𝒢 G F = B pInv 𝒢 G B D - ˙ pInv 𝒢 G B E = pInv 𝒢 G B D - ˙ E
48 45 46 47 3eqtr2d φ C mid 𝒢 G F = B A - ˙ B = pInv 𝒢 G B D - ˙ E
49 31 oveq1d φ C mid 𝒢 G F = B B - ˙ C = E - ˙ C
50 eqid lInv 𝒢 G A mid 𝒢 G pInv 𝒢 G B D Line 𝒢 G B = lInv 𝒢 G A mid 𝒢 G pInv 𝒢 G B D Line 𝒢 G B
51 eqidd φ C mid 𝒢 G F = B C = C
52 1 2 3 18 19 20 21 22 27 28 22 29 44 48 49 31 50 51 hypcgrlem1 φ C mid 𝒢 G F = B A - ˙ C = pInv 𝒢 G B D - ˙ C
53 40 oveq2d φ C mid 𝒢 G F = B pInv 𝒢 G B D - ˙ C = pInv 𝒢 G B D - ˙ pInv 𝒢 G B F
54 1 2 3 23 24 18 21 25 26 35 miriso φ C mid 𝒢 G F = B pInv 𝒢 G B D - ˙ pInv 𝒢 G B F = D - ˙ F
55 52 53 54 3eqtrd φ C mid 𝒢 G F = B A - ˙ C = D - ˙ F
56 4 ad2antrr φ C mid 𝒢 G F B C = F G 𝒢 Tarski
57 5 ad2antrr φ C mid 𝒢 G F B C = F G Dim 𝒢 2
58 6 ad2antrr φ C mid 𝒢 G F B C = F A P
59 7 ad2antrr φ C mid 𝒢 G F B C = F B P
60 8 ad2antrr φ C mid 𝒢 G F B C = F C P
61 9 ad2antrr φ C mid 𝒢 G F B C = F D P
62 10 ad2antrr φ C mid 𝒢 G F B C = F E P
63 11 ad2antrr φ C mid 𝒢 G F B C = F F P
64 12 ad2antrr φ C mid 𝒢 G F B C = F ⟨“ ABC ”⟩ 𝒢 G
65 13 ad2antrr φ C mid 𝒢 G F B C = F ⟨“ DEF ”⟩ 𝒢 G
66 14 ad2antrr φ C mid 𝒢 G F B C = F A - ˙ B = D - ˙ E
67 15 ad2antrr φ C mid 𝒢 G F B C = F B - ˙ C = E - ˙ F
68 16 ad2antrr φ C mid 𝒢 G F B C = F B = E
69 eqid lInv 𝒢 G A mid 𝒢 G D Line 𝒢 G B = lInv 𝒢 G A mid 𝒢 G D Line 𝒢 G B
70 simpr φ C mid 𝒢 G F B C = F C = F
71 1 2 3 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 hypcgrlem1 φ C mid 𝒢 G F B C = F A - ˙ C = D - ˙ F
72 4 ad2antrr φ C mid 𝒢 G F B C F G 𝒢 Tarski
73 5 ad2antrr φ C mid 𝒢 G F B C F G Dim 𝒢 2
74 6 ad2antrr φ C mid 𝒢 G F B C F A P
75 7 ad2antrr φ C mid 𝒢 G F B C F B P
76 8 ad2antrr φ C mid 𝒢 G F B C F C P
77 11 ad2antrr φ C mid 𝒢 G F B C F F P
78 1 2 3 72 73 76 77 midcl φ C mid 𝒢 G F B C F C mid 𝒢 G F P
79 simplr φ C mid 𝒢 G F B C F C mid 𝒢 G F B
80 1 3 23 72 78 75 79 tgelrnln φ C mid 𝒢 G F B C F C mid 𝒢 G F Line 𝒢 G B ran Line 𝒢 G
81 9 ad2antrr φ C mid 𝒢 G F B C F D P
82 1 2 3 72 73 17 23 80 81 lmicl φ C mid 𝒢 G F B C F S D P
83 10 ad2antrr φ C mid 𝒢 G F B C F E P
84 1 2 3 72 73 17 23 80 83 lmicl φ C mid 𝒢 G F B C F S E P
85 1 2 3 72 73 17 23 80 77 lmicl φ C mid 𝒢 G F B C F S F P
86 12 ad2antrr φ C mid 𝒢 G F B C F ⟨“ ABC ”⟩ 𝒢 G
87 1 2 3 72 73 17 23 80 lmimot φ C mid 𝒢 G F B C F S G Ismt G
88 13 ad2antrr φ C mid 𝒢 G F B C F ⟨“ DEF ”⟩ 𝒢 G
89 1 2 3 23 24 72 81 83 77 87 88 motrag φ C mid 𝒢 G F B C F ⟨“ S D S E S F ”⟩ 𝒢 G
90 14 ad2antrr φ C mid 𝒢 G F B C F A - ˙ B = D - ˙ E
91 1 2 3 72 73 17 23 80 81 83 lmiiso φ C mid 𝒢 G F B C F S D - ˙ S E = D - ˙ E
92 90 91 eqtr4d φ C mid 𝒢 G F B C F A - ˙ B = S D - ˙ S E
93 15 ad2antrr φ C mid 𝒢 G F B C F B - ˙ C = E - ˙ F
94 1 2 3 72 73 17 23 80 83 77 lmiiso φ C mid 𝒢 G F B C F S E - ˙ S F = E - ˙ F
95 93 94 eqtr4d φ C mid 𝒢 G F B C F B - ˙ C = S E - ˙ S F
96 1 3 23 72 78 75 79 tglinerflx2 φ C mid 𝒢 G F B C F B C mid 𝒢 G F Line 𝒢 G B
97 1 2 3 72 73 17 23 80 75 96 lmicinv φ C mid 𝒢 G F B C F S B = B
98 16 ad2antrr φ C mid 𝒢 G F B C F B = E
99 98 fveq2d φ C mid 𝒢 G F B C F S B = S E
100 97 99 eqtr3d φ C mid 𝒢 G F B C F B = S E
101 eqid lInv 𝒢 G A mid 𝒢 G S D Line 𝒢 G B = lInv 𝒢 G A mid 𝒢 G S D Line 𝒢 G B
102 1 2 3 72 73 76 77 midcom φ C mid 𝒢 G F B C F C mid 𝒢 G F = F mid 𝒢 G C
103 1 3 23 72 78 75 79 tglinerflx1 φ C mid 𝒢 G F B C F C mid 𝒢 G F C mid 𝒢 G F Line 𝒢 G B
104 102 103 eqeltrrd φ C mid 𝒢 G F B C F F mid 𝒢 G C C mid 𝒢 G F Line 𝒢 G B
105 simpr φ C mid 𝒢 G F B C F C F
106 105 necomd φ C mid 𝒢 G F B C F F C
107 1 3 23 72 77 76 106 tgelrnln φ C mid 𝒢 G F B C F F Line 𝒢 G C ran Line 𝒢 G
108 1 2 3 72 73 76 77 midbtwn φ C mid 𝒢 G F B C F C mid 𝒢 G F C I F
109 1 2 3 72 76 78 77 108 tgbtwncom φ C mid 𝒢 G F B C F C mid 𝒢 G F F I C
110 1 3 23 72 77 76 78 106 109 btwnlng1 φ C mid 𝒢 G F B C F C mid 𝒢 G F F Line 𝒢 G C
111 103 110 elind φ C mid 𝒢 G F B C F C mid 𝒢 G F C mid 𝒢 G F Line 𝒢 G B F Line 𝒢 G C
112 1 3 23 72 77 76 106 tglinerflx2 φ C mid 𝒢 G F B C F C F Line 𝒢 G C
113 79 necomd φ C mid 𝒢 G F B C F B C mid 𝒢 G F
114 4 ad2antrr φ C mid 𝒢 G F B C = C mid 𝒢 G F G 𝒢 Tarski
115 8 ad2antrr φ C mid 𝒢 G F B C = C mid 𝒢 G F C P
116 11 ad2antrr φ C mid 𝒢 G F B C = C mid 𝒢 G F F P
117 5 ad2antrr φ C mid 𝒢 G F B C = C mid 𝒢 G F G Dim 𝒢 2
118 simpr φ C mid 𝒢 G F B C = C mid 𝒢 G F C = C mid 𝒢 G F
119 118 eqcomd φ C mid 𝒢 G F B C = C mid 𝒢 G F C mid 𝒢 G F = C
120 1 2 3 114 117 115 116 119 midcgr φ C mid 𝒢 G F B C = C mid 𝒢 G F C - ˙ C = C - ˙ F
121 120 eqcomd φ C mid 𝒢 G F B C = C mid 𝒢 G F C - ˙ F = C - ˙ C
122 1 2 3 114 115 116 115 121 axtgcgrid φ C mid 𝒢 G F B C = C mid 𝒢 G F C = F
123 122 ex φ C mid 𝒢 G F B C = C mid 𝒢 G F C = F
124 123 necon3d φ C mid 𝒢 G F B C F C C mid 𝒢 G F
125 124 imp φ C mid 𝒢 G F B C F C C mid 𝒢 G F
126 98 eqcomd φ C mid 𝒢 G F B C F E = B
127 eqidd φ C mid 𝒢 G F B C F C mid 𝒢 G F = C mid 𝒢 G F
128 1 2 3 72 73 76 77 24 78 ismidb φ C mid 𝒢 G F B C F F = pInv 𝒢 G C mid 𝒢 G F C C mid 𝒢 G F = C mid 𝒢 G F
129 127 128 mpbird φ C mid 𝒢 G F B C F F = pInv 𝒢 G C mid 𝒢 G F C
130 126 129 oveq12d φ C mid 𝒢 G F B C F E - ˙ F = B - ˙ pInv 𝒢 G C mid 𝒢 G F C
131 93 130 eqtrd φ C mid 𝒢 G F B C F B - ˙ C = B - ˙ pInv 𝒢 G C mid 𝒢 G F C
132 1 2 3 23 24 72 75 78 76 israg φ C mid 𝒢 G F B C F ⟨“ BC mid 𝒢 G FC ”⟩ 𝒢 G B - ˙ C = B - ˙ pInv 𝒢 G C mid 𝒢 G F C
133 131 132 mpbird φ C mid 𝒢 G F B C F ⟨“ BC mid 𝒢 G FC ”⟩ 𝒢 G
134 1 2 3 23 72 80 107 111 96 112 113 125 133 ragperp φ C mid 𝒢 G F B C F C mid 𝒢 G F Line 𝒢 G B 𝒢 G F Line 𝒢 G C
135 134 orcd φ C mid 𝒢 G F B C F C mid 𝒢 G F Line 𝒢 G B 𝒢 G F Line 𝒢 G C F = C
136 1 2 3 72 73 17 23 80 77 76 islmib φ C mid 𝒢 G F B C F C = S F F mid 𝒢 G C C mid 𝒢 G F Line 𝒢 G B C mid 𝒢 G F Line 𝒢 G B 𝒢 G F Line 𝒢 G C F = C
137 104 135 136 mpbir2and φ C mid 𝒢 G F B C F C = S F
138 1 2 3 72 73 74 75 76 82 84 85 86 89 92 95 100 101 137 hypcgrlem1 φ C mid 𝒢 G F B C F A - ˙ C = S D - ˙ S F
139 1 2 3 72 73 17 23 80 81 77 lmiiso φ C mid 𝒢 G F B C F S D - ˙ S F = D - ˙ F
140 138 139 eqtrd φ C mid 𝒢 G F B C F A - ˙ C = D - ˙ F
141 71 140 pm2.61dane φ C mid 𝒢 G F B A - ˙ C = D - ˙ F
142 55 141 pm2.61dane φ A - ˙ C = D - ˙ F