Step |
Hyp |
Ref |
Expression |
1 |
|
hypcgr.p |
|
2 |
|
hypcgr.m |
|
3 |
|
hypcgr.i |
|
4 |
|
hypcgr.g |
|
5 |
|
hypcgr.h |
|
6 |
|
hypcgr.a |
|
7 |
|
hypcgr.b |
|
8 |
|
hypcgr.c |
|
9 |
|
hypcgr.d |
|
10 |
|
hypcgr.e |
|
11 |
|
hypcgr.f |
|
12 |
|
hypcgr.1 |
|
13 |
|
hypcgr.2 |
|
14 |
|
hypcgr.3 |
|
15 |
|
hypcgr.4 |
|
16 |
|
hypcgrlem2.b |
|
17 |
|
hypcgrlem2.s |
|
18 |
4
|
adantr |
|
19 |
5
|
adantr |
|
20 |
6
|
adantr |
|
21 |
7
|
adantr |
|
22 |
8
|
adantr |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
9
|
adantr |
|
27 |
1 2 3 23 24 18 21 25 26
|
mircl |
|
28 |
10
|
adantr |
|
29 |
12
|
adantr |
|
30 |
|
eqidd |
|
31 |
16
|
adantr |
|
32 |
1 2 3 23 24 18 21 25 28
|
mirinv |
|
33 |
31 32
|
mpbird |
|
34 |
33
|
eqcomd |
|
35 |
11
|
adantr |
|
36 |
1 2 3 18 19 22 35
|
midcom |
|
37 |
|
simpr |
|
38 |
36 37
|
eqtr3d |
|
39 |
1 2 3 18 19 35 22 24 21
|
ismidb |
|
40 |
38 39
|
mpbird |
|
41 |
30 34 40
|
s3eqd |
|
42 |
13
|
adantr |
|
43 |
1 2 3 23 24 18 26 28 35 42 25 21
|
mirrag |
|
44 |
41 43
|
eqeltrd |
|
45 |
14
|
adantr |
|
46 |
1 2 3 23 24 18 21 25 26 28
|
miriso |
|
47 |
33
|
oveq2d |
|
48 |
45 46 47
|
3eqtr2d |
|
49 |
31
|
oveq1d |
|
50 |
|
eqid |
|
51 |
|
eqidd |
|
52 |
1 2 3 18 19 20 21 22 27 28 22 29 44 48 49 31 50 51
|
hypcgrlem1 |
|
53 |
40
|
oveq2d |
|
54 |
1 2 3 23 24 18 21 25 26 35
|
miriso |
|
55 |
52 53 54
|
3eqtrd |
|
56 |
4
|
ad2antrr |
|
57 |
5
|
ad2antrr |
|
58 |
6
|
ad2antrr |
|
59 |
7
|
ad2antrr |
|
60 |
8
|
ad2antrr |
|
61 |
9
|
ad2antrr |
|
62 |
10
|
ad2antrr |
|
63 |
11
|
ad2antrr |
|
64 |
12
|
ad2antrr |
|
65 |
13
|
ad2antrr |
|
66 |
14
|
ad2antrr |
|
67 |
15
|
ad2antrr |
|
68 |
16
|
ad2antrr |
|
69 |
|
eqid |
|
70 |
|
simpr |
|
71 |
1 2 3 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
|
hypcgrlem1 |
|
72 |
4
|
ad2antrr |
|
73 |
5
|
ad2antrr |
|
74 |
6
|
ad2antrr |
|
75 |
7
|
ad2antrr |
|
76 |
8
|
ad2antrr |
|
77 |
11
|
ad2antrr |
|
78 |
1 2 3 72 73 76 77
|
midcl |
|
79 |
|
simplr |
|
80 |
1 3 23 72 78 75 79
|
tgelrnln |
|
81 |
9
|
ad2antrr |
|
82 |
1 2 3 72 73 17 23 80 81
|
lmicl |
|
83 |
10
|
ad2antrr |
|
84 |
1 2 3 72 73 17 23 80 83
|
lmicl |
|
85 |
1 2 3 72 73 17 23 80 77
|
lmicl |
|
86 |
12
|
ad2antrr |
|
87 |
1 2 3 72 73 17 23 80
|
lmimot |
|
88 |
13
|
ad2antrr |
|
89 |
1 2 3 23 24 72 81 83 77 87 88
|
motrag |
|
90 |
14
|
ad2antrr |
|
91 |
1 2 3 72 73 17 23 80 81 83
|
lmiiso |
|
92 |
90 91
|
eqtr4d |
|
93 |
15
|
ad2antrr |
|
94 |
1 2 3 72 73 17 23 80 83 77
|
lmiiso |
|
95 |
93 94
|
eqtr4d |
|
96 |
1 3 23 72 78 75 79
|
tglinerflx2 |
|
97 |
1 2 3 72 73 17 23 80 75 96
|
lmicinv |
|
98 |
16
|
ad2antrr |
|
99 |
98
|
fveq2d |
|
100 |
97 99
|
eqtr3d |
|
101 |
|
eqid |
|
102 |
1 2 3 72 73 76 77
|
midcom |
|
103 |
1 3 23 72 78 75 79
|
tglinerflx1 |
|
104 |
102 103
|
eqeltrrd |
|
105 |
|
simpr |
|
106 |
105
|
necomd |
|
107 |
1 3 23 72 77 76 106
|
tgelrnln |
|
108 |
1 2 3 72 73 76 77
|
midbtwn |
|
109 |
1 2 3 72 76 78 77 108
|
tgbtwncom |
|
110 |
1 3 23 72 77 76 78 106 109
|
btwnlng1 |
|
111 |
103 110
|
elind |
|
112 |
1 3 23 72 77 76 106
|
tglinerflx2 |
|
113 |
79
|
necomd |
|
114 |
4
|
ad2antrr |
|
115 |
8
|
ad2antrr |
|
116 |
11
|
ad2antrr |
|
117 |
5
|
ad2antrr |
|
118 |
|
simpr |
|
119 |
118
|
eqcomd |
|
120 |
1 2 3 114 117 115 116 119
|
midcgr |
|
121 |
120
|
eqcomd |
|
122 |
1 2 3 114 115 116 115 121
|
axtgcgrid |
|
123 |
122
|
ex |
|
124 |
123
|
necon3d |
|
125 |
124
|
imp |
|
126 |
98
|
eqcomd |
|
127 |
|
eqidd |
|
128 |
1 2 3 72 73 76 77 24 78
|
ismidb |
|
129 |
127 128
|
mpbird |
|
130 |
126 129
|
oveq12d |
|
131 |
93 130
|
eqtrd |
|
132 |
1 2 3 23 24 72 75 78 76
|
israg |
|
133 |
131 132
|
mpbird |
|
134 |
1 2 3 23 72 80 107 111 96 112 113 125 133
|
ragperp |
|
135 |
134
|
orcd |
|
136 |
1 2 3 72 73 17 23 80 77 76
|
islmib |
|
137 |
104 135 136
|
mpbir2and |
|
138 |
1 2 3 72 73 74 75 76 82 84 85 86 89 92 95 100 101 137
|
hypcgrlem1 |
|
139 |
1 2 3 72 73 17 23 80 81 77
|
lmiiso |
|
140 |
138 139
|
eqtrd |
|
141 |
71 140
|
pm2.61dane |
|
142 |
55 141
|
pm2.61dane |
|