Metamath Proof Explorer


Theorem i1f0

Description: The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion i1f0 × 0 dom 1

Proof

Step Hyp Ref Expression
1 0re 0
2 1 fconst6 × 0 :
3 2 a1i × 0 :
4 snfi 0 Fin
5 rnxpss ran × 0 0
6 ssfi 0 Fin ran × 0 0 ran × 0 Fin
7 4 5 6 mp2an ran × 0 Fin
8 7 a1i ran × 0 Fin
9 difss ran × 0 0 ran × 0
10 9 5 sstri ran × 0 0 0
11 10 sseli x ran × 0 0 x 0
12 11 adantl x ran × 0 0 x 0
13 eldifn x ran × 0 0 ¬ x 0
14 13 adantl x ran × 0 0 ¬ x 0
15 12 14 pm2.21dd x ran × 0 0 × 0 -1 x dom vol
16 12 14 pm2.21dd x ran × 0 0 vol × 0 -1 x
17 3 8 15 16 i1fd × 0 dom 1
18 17 mptru × 0 dom 1