Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
i1f0
Next ⟩
itg10
Metamath Proof Explorer
Ascii
Unicode
Theorem
i1f0
Description:
The zero function is simple.
(Contributed by
Mario Carneiro
, 18-Jun-2014)
Ref
Expression
Assertion
i1f0
⊢
ℝ
×
0
∈
dom
⁡
∫
1
Proof
Step
Hyp
Ref
Expression
1
0re
⊢
0
∈
ℝ
2
1
fconst6
⊢
ℝ
×
0
:
ℝ
⟶
ℝ
3
2
a1i
⊢
⊤
→
ℝ
×
0
:
ℝ
⟶
ℝ
4
snfi
⊢
0
∈
Fin
5
rnxpss
⊢
ran
⁡
ℝ
×
0
⊆
0
6
ssfi
⊢
0
∈
Fin
∧
ran
⁡
ℝ
×
0
⊆
0
→
ran
⁡
ℝ
×
0
∈
Fin
7
4
5
6
mp2an
⊢
ran
⁡
ℝ
×
0
∈
Fin
8
7
a1i
⊢
⊤
→
ran
⁡
ℝ
×
0
∈
Fin
9
difss
⊢
ran
⁡
ℝ
×
0
∖
0
⊆
ran
⁡
ℝ
×
0
10
9
5
sstri
⊢
ran
⁡
ℝ
×
0
∖
0
⊆
0
11
10
sseli
⊢
x
∈
ran
⁡
ℝ
×
0
∖
0
→
x
∈
0
12
11
adantl
⊢
⊤
∧
x
∈
ran
⁡
ℝ
×
0
∖
0
→
x
∈
0
13
eldifn
⊢
x
∈
ran
⁡
ℝ
×
0
∖
0
→
¬
x
∈
0
14
13
adantl
⊢
⊤
∧
x
∈
ran
⁡
ℝ
×
0
∖
0
→
¬
x
∈
0
15
12
14
pm2.21dd
⊢
⊤
∧
x
∈
ran
⁡
ℝ
×
0
∖
0
→
ℝ
×
0
-1
x
∈
dom
⁡
vol
16
12
14
pm2.21dd
⊢
⊤
∧
x
∈
ran
⁡
ℝ
×
0
∖
0
→
vol
⁡
ℝ
×
0
-1
x
∈
ℝ
17
3
8
15
16
i1fd
⊢
⊤
→
ℝ
×
0
∈
dom
⁡
∫
1
18
17
mptru
⊢
ℝ
×
0
∈
dom
⁡
∫
1