Metamath Proof Explorer


Theorem i1f1

Description: Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Hypothesis i1f1.1 F = x if x A 1 0
Assertion i1f1 A dom vol vol A F dom 1

Proof

Step Hyp Ref Expression
1 i1f1.1 F = x if x A 1 0
2 1 i1f1lem F : 0 1 A dom vol F -1 1 = A
3 2 simpli F : 0 1
4 0re 0
5 1re 1
6 prssi 0 1 0 1
7 4 5 6 mp2an 0 1
8 fss F : 0 1 0 1 F :
9 3 7 8 mp2an F :
10 9 a1i A dom vol vol A F :
11 prfi 0 1 Fin
12 1ex 1 V
13 12 prid2 1 0 1
14 c0ex 0 V
15 14 prid1 0 0 1
16 13 15 ifcli if x A 1 0 0 1
17 16 a1i A dom vol vol A x if x A 1 0 0 1
18 17 1 fmptd A dom vol vol A F : 0 1
19 frn F : 0 1 ran F 0 1
20 18 19 syl A dom vol vol A ran F 0 1
21 ssfi 0 1 Fin ran F 0 1 ran F Fin
22 11 20 21 sylancr A dom vol vol A ran F Fin
23 3 19 ax-mp ran F 0 1
24 df-pr 0 1 = 0 1
25 24 equncomi 0 1 = 1 0
26 23 25 sseqtri ran F 1 0
27 ssdif ran F 1 0 ran F 0 1 0 0
28 26 27 ax-mp ran F 0 1 0 0
29 difun2 1 0 0 = 1 0
30 difss 1 0 1
31 29 30 eqsstri 1 0 0 1
32 28 31 sstri ran F 0 1
33 32 sseli y ran F 0 y 1
34 elsni y 1 y = 1
35 33 34 syl y ran F 0 y = 1
36 35 sneqd y ran F 0 y = 1
37 36 imaeq2d y ran F 0 F -1 y = F -1 1
38 2 simpri A dom vol F -1 1 = A
39 38 adantr A dom vol vol A F -1 1 = A
40 37 39 sylan9eqr A dom vol vol A y ran F 0 F -1 y = A
41 simpll A dom vol vol A y ran F 0 A dom vol
42 40 41 eqeltrd A dom vol vol A y ran F 0 F -1 y dom vol
43 40 fveq2d A dom vol vol A y ran F 0 vol F -1 y = vol A
44 simplr A dom vol vol A y ran F 0 vol A
45 43 44 eqeltrd A dom vol vol A y ran F 0 vol F -1 y
46 10 22 42 45 i1fd A dom vol vol A F dom 1