Step |
Hyp |
Ref |
Expression |
1 |
|
i1f1.1 |
|
2 |
1
|
i1f1lem |
|
3 |
2
|
simpli |
|
4 |
|
0re |
|
5 |
|
1re |
|
6 |
|
prssi |
|
7 |
4 5 6
|
mp2an |
|
8 |
|
fss |
|
9 |
3 7 8
|
mp2an |
|
10 |
9
|
a1i |
|
11 |
|
prfi |
|
12 |
|
1ex |
|
13 |
12
|
prid2 |
|
14 |
|
c0ex |
|
15 |
14
|
prid1 |
|
16 |
13 15
|
ifcli |
|
17 |
16
|
a1i |
|
18 |
17 1
|
fmptd |
|
19 |
|
frn |
|
20 |
18 19
|
syl |
|
21 |
|
ssfi |
|
22 |
11 20 21
|
sylancr |
|
23 |
3 19
|
ax-mp |
|
24 |
|
df-pr |
|
25 |
24
|
equncomi |
|
26 |
23 25
|
sseqtri |
|
27 |
|
ssdif |
|
28 |
26 27
|
ax-mp |
|
29 |
|
difun2 |
|
30 |
|
difss |
|
31 |
29 30
|
eqsstri |
|
32 |
28 31
|
sstri |
|
33 |
32
|
sseli |
|
34 |
|
elsni |
|
35 |
33 34
|
syl |
|
36 |
35
|
sneqd |
|
37 |
36
|
imaeq2d |
|
38 |
2
|
simpri |
|
39 |
38
|
adantr |
|
40 |
37 39
|
sylan9eqr |
|
41 |
|
simpll |
|
42 |
40 41
|
eqeltrd |
|
43 |
40
|
fveq2d |
|
44 |
|
simplr |
|
45 |
43 44
|
eqeltrd |
|
46 |
10 22 42 45
|
i1fd |
|