Metamath Proof Explorer


Theorem i1fadd

Description: The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φFdom1
i1fadd.2 φGdom1
Assertion i1fadd φF+fGdom1

Proof

Step Hyp Ref Expression
1 i1fadd.1 φFdom1
2 i1fadd.2 φGdom1
3 readdcl xyx+y
4 3 adantl φxyx+y
5 i1ff Fdom1F:
6 1 5 syl φF:
7 i1ff Gdom1G:
8 2 7 syl φG:
9 reex V
10 9 a1i φV
11 inidm =
12 4 6 8 10 10 11 off φF+fG:
13 i1frn Fdom1ranFFin
14 1 13 syl φranFFin
15 i1frn Gdom1ranGFin
16 2 15 syl φranGFin
17 xpfi ranFFinranGFinranF×ranGFin
18 14 16 17 syl2anc φranF×ranGFin
19 eqid uranF,vranGu+v=uranF,vranGu+v
20 ovex u+vV
21 19 20 fnmpoi uranF,vranGu+vFnranF×ranG
22 dffn4 uranF,vranGu+vFnranF×ranGuranF,vranGu+v:ranF×ranGontoranuranF,vranGu+v
23 21 22 mpbi uranF,vranGu+v:ranF×ranGontoranuranF,vranGu+v
24 fofi ranF×ranGFinuranF,vranGu+v:ranF×ranGontoranuranF,vranGu+vranuranF,vranGu+vFin
25 18 23 24 sylancl φranuranF,vranGu+vFin
26 eqid x+y=x+y
27 rspceov xranFyranGx+y=x+yuranFvranGx+y=u+v
28 26 27 mp3an3 xranFyranGuranFvranGx+y=u+v
29 ovex x+yV
30 eqeq1 w=x+yw=u+vx+y=u+v
31 30 2rexbidv w=x+yuranFvranGw=u+vuranFvranGx+y=u+v
32 29 31 elab x+yw|uranFvranGw=u+vuranFvranGx+y=u+v
33 28 32 sylibr xranFyranGx+yw|uranFvranGw=u+v
34 33 adantl φxranFyranGx+yw|uranFvranGw=u+v
35 6 ffnd φFFn
36 dffn3 FFnF:ranF
37 35 36 sylib φF:ranF
38 8 ffnd φGFn
39 dffn3 GFnG:ranG
40 38 39 sylib φG:ranG
41 34 37 40 10 10 11 off φF+fG:w|uranFvranGw=u+v
42 41 frnd φranF+fGw|uranFvranGw=u+v
43 19 rnmpo ranuranF,vranGu+v=w|uranFvranGw=u+v
44 42 43 sseqtrrdi φranF+fGranuranF,vranGu+v
45 25 44 ssfid φranF+fGFin
46 12 frnd φranF+fG
47 46 ssdifssd φranF+fG0
48 47 sselda φyranF+fG0y
49 48 recnd φyranF+fG0y
50 1 2 i1faddlem φyF+fG-1y=zranGF-1yzG-1z
51 49 50 syldan φyranF+fG0F+fG-1y=zranGF-1yzG-1z
52 16 adantr φyranF+fG0ranGFin
53 1 ad2antrr φyranF+fG0zranGFdom1
54 i1fmbf Fdom1FMblFn
55 53 54 syl φyranF+fG0zranGFMblFn
56 6 ad2antrr φyranF+fG0zranGF:
57 12 ad2antrr φyranF+fG0zranGF+fG:
58 57 frnd φyranF+fG0zranGranF+fG
59 eldifi yranF+fG0yranF+fG
60 59 ad2antlr φyranF+fG0zranGyranF+fG
61 58 60 sseldd φyranF+fG0zranGy
62 8 adantr φyranF+fG0G:
63 62 frnd φyranF+fG0ranG
64 63 sselda φyranF+fG0zranGz
65 61 64 resubcld φyranF+fG0zranGyz
66 mbfimasn FMblFnF:yzF-1yzdomvol
67 55 56 65 66 syl3anc φyranF+fG0zranGF-1yzdomvol
68 2 ad2antrr φyranF+fG0zranGGdom1
69 i1fmbf Gdom1GMblFn
70 68 69 syl φyranF+fG0zranGGMblFn
71 8 ad2antrr φyranF+fG0zranGG:
72 mbfimasn GMblFnG:zG-1zdomvol
73 70 71 64 72 syl3anc φyranF+fG0zranGG-1zdomvol
74 inmbl F-1yzdomvolG-1zdomvolF-1yzG-1zdomvol
75 67 73 74 syl2anc φyranF+fG0zranGF-1yzG-1zdomvol
76 75 ralrimiva φyranF+fG0zranGF-1yzG-1zdomvol
77 finiunmbl ranGFinzranGF-1yzG-1zdomvolzranGF-1yzG-1zdomvol
78 52 76 77 syl2anc φyranF+fG0zranGF-1yzG-1zdomvol
79 51 78 eqeltrd φyranF+fG0F+fG-1ydomvol
80 mblvol F+fG-1ydomvolvolF+fG-1y=vol*F+fG-1y
81 79 80 syl φyranF+fG0volF+fG-1y=vol*F+fG-1y
82 mblss F+fG-1ydomvolF+fG-1y
83 79 82 syl φyranF+fG0F+fG-1y
84 inss1 F-1yzG-1zF-1yz
85 67 adantrr φyranF+fG0zranGz=0F-1yzdomvol
86 mblss F-1yzdomvolF-1yz
87 85 86 syl φyranF+fG0zranGz=0F-1yz
88 mblvol F-1yzdomvolvolF-1yz=vol*F-1yz
89 85 88 syl φyranF+fG0zranGz=0volF-1yz=vol*F-1yz
90 simprr φyranF+fG0zranGz=0z=0
91 90 oveq2d φyranF+fG0zranGz=0yz=y0
92 49 adantr φyranF+fG0zranGz=0y
93 92 subid1d φyranF+fG0zranGz=0y0=y
94 91 93 eqtrd φyranF+fG0zranGz=0yz=y
95 94 sneqd φyranF+fG0zranGz=0yz=y
96 95 imaeq2d φyranF+fG0zranGz=0F-1yz=F-1y
97 96 fveq2d φyranF+fG0zranGz=0volF-1yz=volF-1y
98 i1fima2sn Fdom1yranF+fG0volF-1y
99 1 98 sylan φyranF+fG0volF-1y
100 99 adantr φyranF+fG0zranGz=0volF-1y
101 97 100 eqeltrd φyranF+fG0zranGz=0volF-1yz
102 89 101 eqeltrrd φyranF+fG0zranGz=0vol*F-1yz
103 ovolsscl F-1yzG-1zF-1yzF-1yzvol*F-1yzvol*F-1yzG-1z
104 84 87 102 103 mp3an2i φyranF+fG0zranGz=0vol*F-1yzG-1z
105 104 expr φyranF+fG0zranGz=0vol*F-1yzG-1z
106 eldifsn zranG0zranGz0
107 inss2 F-1yzG-1zG-1z
108 eldifi zranG0zranG
109 mblss G-1zdomvolG-1z
110 73 109 syl φyranF+fG0zranGG-1z
111 108 110 sylan2 φyranF+fG0zranG0G-1z
112 i1fima Gdom1G-1zdomvol
113 2 112 syl φG-1zdomvol
114 113 ad2antrr φyranF+fG0zranG0G-1zdomvol
115 mblvol G-1zdomvolvolG-1z=vol*G-1z
116 114 115 syl φyranF+fG0zranG0volG-1z=vol*G-1z
117 2 adantr φyranF+fG0Gdom1
118 i1fima2sn Gdom1zranG0volG-1z
119 117 118 sylan φyranF+fG0zranG0volG-1z
120 116 119 eqeltrrd φyranF+fG0zranG0vol*G-1z
121 ovolsscl F-1yzG-1zG-1zG-1zvol*G-1zvol*F-1yzG-1z
122 107 111 120 121 mp3an2i φyranF+fG0zranG0vol*F-1yzG-1z
123 106 122 sylan2br φyranF+fG0zranGz0vol*F-1yzG-1z
124 123 expr φyranF+fG0zranGz0vol*F-1yzG-1z
125 105 124 pm2.61dne φyranF+fG0zranGvol*F-1yzG-1z
126 52 125 fsumrecl φyranF+fG0zranGvol*F-1yzG-1z
127 51 fveq2d φyranF+fG0vol*F+fG-1y=vol*zranGF-1yzG-1z
128 107 110 sstrid φyranF+fG0zranGF-1yzG-1z
129 128 125 jca φyranF+fG0zranGF-1yzG-1zvol*F-1yzG-1z
130 129 ralrimiva φyranF+fG0zranGF-1yzG-1zvol*F-1yzG-1z
131 ovolfiniun ranGFinzranGF-1yzG-1zvol*F-1yzG-1zvol*zranGF-1yzG-1zzranGvol*F-1yzG-1z
132 52 130 131 syl2anc φyranF+fG0vol*zranGF-1yzG-1zzranGvol*F-1yzG-1z
133 127 132 eqbrtrd φyranF+fG0vol*F+fG-1yzranGvol*F-1yzG-1z
134 ovollecl F+fG-1yzranGvol*F-1yzG-1zvol*F+fG-1yzranGvol*F-1yzG-1zvol*F+fG-1y
135 83 126 133 134 syl3anc φyranF+fG0vol*F+fG-1y
136 81 135 eqeltrd φyranF+fG0volF+fG-1y
137 12 45 79 136 i1fd φF+fGdom1