Metamath Proof Explorer


Theorem i1faddlem

Description: Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φ F dom 1
i1fadd.2 φ G dom 1
Assertion i1faddlem φ A F + f G -1 A = y ran G F -1 A y G -1 y

Proof

Step Hyp Ref Expression
1 i1fadd.1 φ F dom 1
2 i1fadd.2 φ G dom 1
3 i1ff F dom 1 F :
4 1 3 syl φ F :
5 4 ffnd φ F Fn
6 i1ff G dom 1 G :
7 2 6 syl φ G :
8 7 ffnd φ G Fn
9 reex V
10 9 a1i φ V
11 inidm =
12 5 8 10 10 11 offn φ F + f G Fn
13 12 adantr φ A F + f G Fn
14 fniniseg F + f G Fn z F + f G -1 A z F + f G z = A
15 13 14 syl φ A z F + f G -1 A z F + f G z = A
16 8 ad2antrr φ A z F + f G z = A G Fn
17 simprl φ A z F + f G z = A z
18 fnfvelrn G Fn z G z ran G
19 16 17 18 syl2anc φ A z F + f G z = A G z ran G
20 simprr φ A z F + f G z = A F + f G z = A
21 eqidd φ z F z = F z
22 eqidd φ z G z = G z
23 5 8 10 10 11 21 22 ofval φ z F + f G z = F z + G z
24 23 ad2ant2r φ A z F + f G z = A F + f G z = F z + G z
25 20 24 eqtr3d φ A z F + f G z = A A = F z + G z
26 25 oveq1d φ A z F + f G z = A A G z = F z + G z - G z
27 ax-resscn
28 fss F : F :
29 4 27 28 sylancl φ F :
30 29 ad2antrr φ A z F + f G z = A F :
31 30 17 ffvelrnd φ A z F + f G z = A F z
32 fss G : G :
33 7 27 32 sylancl φ G :
34 33 ad2antrr φ A z F + f G z = A G :
35 34 17 ffvelrnd φ A z F + f G z = A G z
36 31 35 pncand φ A z F + f G z = A F z + G z - G z = F z
37 26 36 eqtr2d φ A z F + f G z = A F z = A G z
38 5 ad2antrr φ A z F + f G z = A F Fn
39 fniniseg F Fn z F -1 A G z z F z = A G z
40 38 39 syl φ A z F + f G z = A z F -1 A G z z F z = A G z
41 17 37 40 mpbir2and φ A z F + f G z = A z F -1 A G z
42 eqidd φ A z F + f G z = A G z = G z
43 fniniseg G Fn z G -1 G z z G z = G z
44 16 43 syl φ A z F + f G z = A z G -1 G z z G z = G z
45 17 42 44 mpbir2and φ A z F + f G z = A z G -1 G z
46 41 45 elind φ A z F + f G z = A z F -1 A G z G -1 G z
47 oveq2 y = G z A y = A G z
48 47 sneqd y = G z A y = A G z
49 48 imaeq2d y = G z F -1 A y = F -1 A G z
50 sneq y = G z y = G z
51 50 imaeq2d y = G z G -1 y = G -1 G z
52 49 51 ineq12d y = G z F -1 A y G -1 y = F -1 A G z G -1 G z
53 52 eleq2d y = G z z F -1 A y G -1 y z F -1 A G z G -1 G z
54 53 rspcev G z ran G z F -1 A G z G -1 G z y ran G z F -1 A y G -1 y
55 19 46 54 syl2anc φ A z F + f G z = A y ran G z F -1 A y G -1 y
56 55 ex φ A z F + f G z = A y ran G z F -1 A y G -1 y
57 elin z F -1 A y G -1 y z F -1 A y z G -1 y
58 5 adantr φ A F Fn
59 fniniseg F Fn z F -1 A y z F z = A y
60 58 59 syl φ A z F -1 A y z F z = A y
61 8 adantr φ A G Fn
62 fniniseg G Fn z G -1 y z G z = y
63 61 62 syl φ A z G -1 y z G z = y
64 60 63 anbi12d φ A z F -1 A y z G -1 y z F z = A y z G z = y
65 anandi z F z = A y G z = y z F z = A y z G z = y
66 simprl φ A z F z = A y G z = y z
67 23 ad2ant2r φ A z F z = A y G z = y F + f G z = F z + G z
68 simprrl φ A z F z = A y G z = y F z = A y
69 simprrr φ A z F z = A y G z = y G z = y
70 68 69 oveq12d φ A z F z = A y G z = y F z + G z = A - y + y
71 simplr φ A z F z = A y G z = y A
72 33 ad2antrr φ A z F z = A y G z = y G :
73 72 66 ffvelrnd φ A z F z = A y G z = y G z
74 69 73 eqeltrrd φ A z F z = A y G z = y y
75 71 74 npcand φ A z F z = A y G z = y A - y + y = A
76 67 70 75 3eqtrd φ A z F z = A y G z = y F + f G z = A
77 66 76 jca φ A z F z = A y G z = y z F + f G z = A
78 77 ex φ A z F z = A y G z = y z F + f G z = A
79 65 78 syl5bir φ A z F z = A y z G z = y z F + f G z = A
80 64 79 sylbid φ A z F -1 A y z G -1 y z F + f G z = A
81 57 80 syl5bi φ A z F -1 A y G -1 y z F + f G z = A
82 81 rexlimdvw φ A y ran G z F -1 A y G -1 y z F + f G z = A
83 56 82 impbid φ A z F + f G z = A y ran G z F -1 A y G -1 y
84 15 83 bitrd φ A z F + f G -1 A y ran G z F -1 A y G -1 y
85 eliun z y ran G F -1 A y G -1 y y ran G z F -1 A y G -1 y
86 84 85 bitr4di φ A z F + f G -1 A z y ran G F -1 A y G -1 y
87 86 eqrdv φ A F + f G -1 A = y ran G F -1 A y G -1 y