Step |
Hyp |
Ref |
Expression |
1 |
|
i1fadd.1 |
|
2 |
|
i1fadd.2 |
|
3 |
|
i1ff |
|
4 |
1 3
|
syl |
|
5 |
4
|
ffnd |
|
6 |
|
i1ff |
|
7 |
2 6
|
syl |
|
8 |
7
|
ffnd |
|
9 |
|
reex |
|
10 |
9
|
a1i |
|
11 |
|
inidm |
|
12 |
5 8 10 10 11
|
offn |
|
13 |
12
|
adantr |
|
14 |
|
fniniseg |
|
15 |
13 14
|
syl |
|
16 |
8
|
ad2antrr |
|
17 |
|
simprl |
|
18 |
|
fnfvelrn |
|
19 |
16 17 18
|
syl2anc |
|
20 |
|
simprr |
|
21 |
|
eqidd |
|
22 |
|
eqidd |
|
23 |
5 8 10 10 11 21 22
|
ofval |
|
24 |
23
|
ad2ant2r |
|
25 |
20 24
|
eqtr3d |
|
26 |
25
|
oveq1d |
|
27 |
|
ax-resscn |
|
28 |
|
fss |
|
29 |
4 27 28
|
sylancl |
|
30 |
29
|
ad2antrr |
|
31 |
30 17
|
ffvelrnd |
|
32 |
|
fss |
|
33 |
7 27 32
|
sylancl |
|
34 |
33
|
ad2antrr |
|
35 |
34 17
|
ffvelrnd |
|
36 |
31 35
|
pncand |
|
37 |
26 36
|
eqtr2d |
|
38 |
5
|
ad2antrr |
|
39 |
|
fniniseg |
|
40 |
38 39
|
syl |
|
41 |
17 37 40
|
mpbir2and |
|
42 |
|
eqidd |
|
43 |
|
fniniseg |
|
44 |
16 43
|
syl |
|
45 |
17 42 44
|
mpbir2and |
|
46 |
41 45
|
elind |
|
47 |
|
oveq2 |
|
48 |
47
|
sneqd |
|
49 |
48
|
imaeq2d |
|
50 |
|
sneq |
|
51 |
50
|
imaeq2d |
|
52 |
49 51
|
ineq12d |
|
53 |
52
|
eleq2d |
|
54 |
53
|
rspcev |
|
55 |
19 46 54
|
syl2anc |
|
56 |
55
|
ex |
|
57 |
|
elin |
|
58 |
5
|
adantr |
|
59 |
|
fniniseg |
|
60 |
58 59
|
syl |
|
61 |
8
|
adantr |
|
62 |
|
fniniseg |
|
63 |
61 62
|
syl |
|
64 |
60 63
|
anbi12d |
|
65 |
|
anandi |
|
66 |
|
simprl |
|
67 |
23
|
ad2ant2r |
|
68 |
|
simprrl |
|
69 |
|
simprrr |
|
70 |
68 69
|
oveq12d |
|
71 |
|
simplr |
|
72 |
33
|
ad2antrr |
|
73 |
72 66
|
ffvelrnd |
|
74 |
69 73
|
eqeltrrd |
|
75 |
71 74
|
npcand |
|
76 |
67 70 75
|
3eqtrd |
|
77 |
66 76
|
jca |
|
78 |
77
|
ex |
|
79 |
65 78
|
syl5bir |
|
80 |
64 79
|
sylbid |
|
81 |
57 80
|
syl5bi |
|
82 |
81
|
rexlimdvw |
|
83 |
56 82
|
impbid |
|
84 |
15 83
|
bitrd |
|
85 |
|
eliun |
|
86 |
84 85
|
bitr4di |
|
87 |
86
|
eqrdv |
|