Metamath Proof Explorer


Theorem i1fd

Description: A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Hypotheses i1fd.1 φ F :
i1fd.2 φ ran F Fin
i1fd.3 φ x ran F 0 F -1 x dom vol
i1fd.4 φ x ran F 0 vol F -1 x
Assertion i1fd φ F dom 1

Proof

Step Hyp Ref Expression
1 i1fd.1 φ F :
2 i1fd.2 φ ran F Fin
3 i1fd.3 φ x ran F 0 F -1 x dom vol
4 i1fd.4 φ x ran F 0 vol F -1 x
5 1 ad2antrr φ x ran . 0 x F :
6 ffun F : Fun F
7 funcnvcnv Fun F Fun F -1 -1
8 imadif Fun F -1 -1 F -1 x = F -1 F -1 x
9 5 6 7 8 4syl φ x ran . 0 x F -1 x = F -1 F -1 x
10 ioof . : * × * 𝒫
11 frn . : * × * 𝒫 ran . 𝒫
12 10 11 ax-mp ran . 𝒫
13 12 sseli x ran . x 𝒫
14 13 elpwid x ran . x
15 14 ad2antlr φ x ran . 0 x x
16 dfss4 x x = x
17 15 16 sylib φ x ran . 0 x x = x
18 17 imaeq2d φ x ran . 0 x F -1 x = F -1 x
19 9 18 eqtr3d φ x ran . 0 x F -1 F -1 x = F -1 x
20 fimacnv F : F -1 =
21 5 20 syl φ x ran . 0 x F -1 =
22 rembl dom vol
23 21 22 eqeltrdi φ x ran . 0 x F -1 dom vol
24 1 adantr φ ¬ 0 y F :
25 inpreima Fun F F -1 y ran F = F -1 y F -1 ran F
26 iunid x y ran F x = y ran F
27 26 imaeq2i F -1 x y ran F x = F -1 y ran F
28 imaiun F -1 x y ran F x = x y ran F F -1 x
29 27 28 eqtr3i F -1 y ran F = x y ran F F -1 x
30 cnvimass F -1 y dom F
31 cnvimarndm F -1 ran F = dom F
32 30 31 sseqtrri F -1 y F -1 ran F
33 df-ss F -1 y F -1 ran F F -1 y F -1 ran F = F -1 y
34 32 33 mpbi F -1 y F -1 ran F = F -1 y
35 25 29 34 3eqtr3g Fun F x y ran F F -1 x = F -1 y
36 24 6 35 3syl φ ¬ 0 y x y ran F F -1 x = F -1 y
37 2 adantr φ ¬ 0 y ran F Fin
38 inss2 y ran F ran F
39 ssfi ran F Fin y ran F ran F y ran F Fin
40 37 38 39 sylancl φ ¬ 0 y y ran F Fin
41 simpll φ ¬ 0 y x y ran F φ
42 elinel1 0 y ran F 0 y
43 42 con3i ¬ 0 y ¬ 0 y ran F
44 43 adantl φ ¬ 0 y ¬ 0 y ran F
45 disjsn y ran F 0 = ¬ 0 y ran F
46 44 45 sylibr φ ¬ 0 y y ran F 0 =
47 reldisj y ran F ran F y ran F 0 = y ran F ran F 0
48 38 47 ax-mp y ran F 0 = y ran F ran F 0
49 46 48 sylib φ ¬ 0 y y ran F ran F 0
50 49 sselda φ ¬ 0 y x y ran F x ran F 0
51 41 50 3 syl2anc φ ¬ 0 y x y ran F F -1 x dom vol
52 51 ralrimiva φ ¬ 0 y x y ran F F -1 x dom vol
53 finiunmbl y ran F Fin x y ran F F -1 x dom vol x y ran F F -1 x dom vol
54 40 52 53 syl2anc φ ¬ 0 y x y ran F F -1 x dom vol
55 36 54 eqeltrrd φ ¬ 0 y F -1 y dom vol
56 55 ex φ ¬ 0 y F -1 y dom vol
57 56 alrimiv φ y ¬ 0 y F -1 y dom vol
58 57 ad2antrr φ x ran . 0 x y ¬ 0 y F -1 y dom vol
59 elndif 0 x ¬ 0 x
60 59 adantl φ x ran . 0 x ¬ 0 x
61 reex V
62 61 difexi x V
63 eleq2 y = x 0 y 0 x
64 63 notbid y = x ¬ 0 y ¬ 0 x
65 imaeq2 y = x F -1 y = F -1 x
66 65 eleq1d y = x F -1 y dom vol F -1 x dom vol
67 64 66 imbi12d y = x ¬ 0 y F -1 y dom vol ¬ 0 x F -1 x dom vol
68 62 67 spcv y ¬ 0 y F -1 y dom vol ¬ 0 x F -1 x dom vol
69 58 60 68 sylc φ x ran . 0 x F -1 x dom vol
70 difmbl F -1 dom vol F -1 x dom vol F -1 F -1 x dom vol
71 23 69 70 syl2anc φ x ran . 0 x F -1 F -1 x dom vol
72 19 71 eqeltrrd φ x ran . 0 x F -1 x dom vol
73 eleq2 y = x 0 y 0 x
74 73 notbid y = x ¬ 0 y ¬ 0 x
75 imaeq2 y = x F -1 y = F -1 x
76 75 eleq1d y = x F -1 y dom vol F -1 x dom vol
77 74 76 imbi12d y = x ¬ 0 y F -1 y dom vol ¬ 0 x F -1 x dom vol
78 77 spvv y ¬ 0 y F -1 y dom vol ¬ 0 x F -1 x dom vol
79 57 78 syl φ ¬ 0 x F -1 x dom vol
80 79 imp φ ¬ 0 x F -1 x dom vol
81 80 adantlr φ x ran . ¬ 0 x F -1 x dom vol
82 72 81 pm2.61dan φ x ran . F -1 x dom vol
83 82 ralrimiva φ x ran . F -1 x dom vol
84 ismbf F : F MblFn x ran . F -1 x dom vol
85 1 84 syl φ F MblFn x ran . F -1 x dom vol
86 83 85 mpbird φ F MblFn
87 mblvol F -1 y dom vol vol F -1 y = vol * F -1 y
88 55 87 syl φ ¬ 0 y vol F -1 y = vol * F -1 y
89 mblss F -1 y dom vol F -1 y
90 55 89 syl φ ¬ 0 y F -1 y
91 mblvol F -1 x dom vol vol F -1 x = vol * F -1 x
92 51 91 syl φ ¬ 0 y x y ran F vol F -1 x = vol * F -1 x
93 41 50 4 syl2anc φ ¬ 0 y x y ran F vol F -1 x
94 92 93 eqeltrrd φ ¬ 0 y x y ran F vol * F -1 x
95 40 94 fsumrecl φ ¬ 0 y x y ran F vol * F -1 x
96 36 fveq2d φ ¬ 0 y vol * x y ran F F -1 x = vol * F -1 y
97 mblss F -1 x dom vol F -1 x
98 51 97 syl φ ¬ 0 y x y ran F F -1 x
99 98 94 jca φ ¬ 0 y x y ran F F -1 x vol * F -1 x
100 99 ralrimiva φ ¬ 0 y x y ran F F -1 x vol * F -1 x
101 ovolfiniun y ran F Fin x y ran F F -1 x vol * F -1 x vol * x y ran F F -1 x x y ran F vol * F -1 x
102 40 100 101 syl2anc φ ¬ 0 y vol * x y ran F F -1 x x y ran F vol * F -1 x
103 96 102 eqbrtrrd φ ¬ 0 y vol * F -1 y x y ran F vol * F -1 x
104 ovollecl F -1 y x y ran F vol * F -1 x vol * F -1 y x y ran F vol * F -1 x vol * F -1 y
105 90 95 103 104 syl3anc φ ¬ 0 y vol * F -1 y
106 88 105 eqeltrd φ ¬ 0 y vol F -1 y
107 106 ex φ ¬ 0 y vol F -1 y
108 107 alrimiv φ y ¬ 0 y vol F -1 y
109 neldifsn ¬ 0 0
110 61 difexi 0 V
111 eleq2 y = 0 0 y 0 0
112 111 notbid y = 0 ¬ 0 y ¬ 0 0
113 imaeq2 y = 0 F -1 y = F -1 0
114 113 fveq2d y = 0 vol F -1 y = vol F -1 0
115 114 eleq1d y = 0 vol F -1 y vol F -1 0
116 112 115 imbi12d y = 0 ¬ 0 y vol F -1 y ¬ 0 0 vol F -1 0
117 110 116 spcv y ¬ 0 y vol F -1 y ¬ 0 0 vol F -1 0
118 108 109 117 mpisyl φ vol F -1 0
119 1 2 118 3jca φ F : ran F Fin vol F -1 0
120 isi1f F dom 1 F MblFn F : ran F Fin vol F -1 0
121 86 119 120 sylanbrc φ F dom 1