Metamath Proof Explorer


Theorem i1ff

Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion i1ff F dom 1 F :

Proof

Step Hyp Ref Expression
1 isi1f F dom 1 F MblFn F : ran F Fin vol F -1 0
2 1 simprbi F dom 1 F : ran F Fin vol F -1 0
3 2 simp1d F dom 1 F :