Metamath Proof Explorer


Theorem i1fibl

Description: A simple function is integrable. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Assertion i1fibl F dom 1 F 𝐿 1

Proof

Step Hyp Ref Expression
1 i1ff F dom 1 F :
2 1 feqmptd F dom 1 F = x F x
3 i1fmbf F dom 1 F MblFn
4 2 3 eqeltrrd F dom 1 x F x MblFn
5 simpr F dom 1 x x
6 5 biantrurd F dom 1 x 0 F x x 0 F x
7 6 ifbid F dom 1 x if 0 F x F x 0 = if x 0 F x F x 0
8 7 mpteq2dva F dom 1 x if 0 F x F x 0 = x if x 0 F x F x 0
9 8 fveq2d F dom 1 2 x if 0 F x F x 0 = 2 x if x 0 F x F x 0
10 eqid x if 0 F x F x 0 = x if 0 F x F x 0
11 10 i1fpos F dom 1 x if 0 F x F x 0 dom 1
12 0re 0
13 1 ffvelrnda F dom 1 x F x
14 max1 0 F x 0 if 0 F x F x 0
15 12 13 14 sylancr F dom 1 x 0 if 0 F x F x 0
16 15 ralrimiva F dom 1 x 0 if 0 F x F x 0
17 reex V
18 17 a1i F dom 1 V
19 12 a1i F dom 1 x 0
20 fvex F x V
21 c0ex 0 V
22 20 21 ifex if 0 F x F x 0 V
23 22 a1i F dom 1 x if 0 F x F x 0 V
24 fconstmpt × 0 = x 0
25 24 a1i F dom 1 × 0 = x 0
26 eqidd F dom 1 x if 0 F x F x 0 = x if 0 F x F x 0
27 18 19 23 25 26 ofrfval2 F dom 1 × 0 f x if 0 F x F x 0 x 0 if 0 F x F x 0
28 16 27 mpbird F dom 1 × 0 f x if 0 F x F x 0
29 ax-resscn
30 29 a1i F dom 1
31 22 10 fnmpti x if 0 F x F x 0 Fn
32 31 a1i F dom 1 x if 0 F x F x 0 Fn
33 30 32 0pledm F dom 1 0 𝑝 f x if 0 F x F x 0 × 0 f x if 0 F x F x 0
34 28 33 mpbird F dom 1 0 𝑝 f x if 0 F x F x 0
35 itg2itg1 x if 0 F x F x 0 dom 1 0 𝑝 f x if 0 F x F x 0 2 x if 0 F x F x 0 = 1 x if 0 F x F x 0
36 11 34 35 syl2anc F dom 1 2 x if 0 F x F x 0 = 1 x if 0 F x F x 0
37 9 36 eqtr3d F dom 1 2 x if x 0 F x F x 0 = 1 x if 0 F x F x 0
38 itg1cl x if 0 F x F x 0 dom 1 1 x if 0 F x F x 0
39 11 38 syl F dom 1 1 x if 0 F x F x 0
40 37 39 eqeltrd F dom 1 2 x if x 0 F x F x 0
41 5 biantrurd F dom 1 x 0 F x x 0 F x
42 41 ifbid F dom 1 x if 0 F x F x 0 = if x 0 F x F x 0
43 42 mpteq2dva F dom 1 x if 0 F x F x 0 = x if x 0 F x F x 0
44 43 fveq2d F dom 1 2 x if 0 F x F x 0 = 2 x if x 0 F x F x 0
45 neg1rr 1
46 45 a1i F dom 1 x 1
47 fconstmpt × 1 = x 1
48 47 a1i F dom 1 × 1 = x 1
49 18 46 13 48 2 offval2 F dom 1 × 1 × f F = x -1 F x
50 13 recnd F dom 1 x F x
51 50 mulm1d F dom 1 x -1 F x = F x
52 51 mpteq2dva F dom 1 x -1 F x = x F x
53 49 52 eqtrd F dom 1 × 1 × f F = x F x
54 id F dom 1 F dom 1
55 45 a1i F dom 1 1
56 54 55 i1fmulc F dom 1 × 1 × f F dom 1
57 53 56 eqeltrrd F dom 1 x F x dom 1
58 57 i1fposd F dom 1 x if 0 F x F x 0 dom 1
59 13 renegcld F dom 1 x F x
60 max1 0 F x 0 if 0 F x F x 0
61 12 59 60 sylancr F dom 1 x 0 if 0 F x F x 0
62 61 ralrimiva F dom 1 x 0 if 0 F x F x 0
63 negex F x V
64 63 21 ifex if 0 F x F x 0 V
65 64 a1i F dom 1 x if 0 F x F x 0 V
66 eqidd F dom 1 x if 0 F x F x 0 = x if 0 F x F x 0
67 18 19 65 25 66 ofrfval2 F dom 1 × 0 f x if 0 F x F x 0 x 0 if 0 F x F x 0
68 62 67 mpbird F dom 1 × 0 f x if 0 F x F x 0
69 eqid x if 0 F x F x 0 = x if 0 F x F x 0
70 64 69 fnmpti x if 0 F x F x 0 Fn
71 70 a1i F dom 1 x if 0 F x F x 0 Fn
72 30 71 0pledm F dom 1 0 𝑝 f x if 0 F x F x 0 × 0 f x if 0 F x F x 0
73 68 72 mpbird F dom 1 0 𝑝 f x if 0 F x F x 0
74 itg2itg1 x if 0 F x F x 0 dom 1 0 𝑝 f x if 0 F x F x 0 2 x if 0 F x F x 0 = 1 x if 0 F x F x 0
75 58 73 74 syl2anc F dom 1 2 x if 0 F x F x 0 = 1 x if 0 F x F x 0
76 44 75 eqtr3d F dom 1 2 x if x 0 F x F x 0 = 1 x if 0 F x F x 0
77 itg1cl x if 0 F x F x 0 dom 1 1 x if 0 F x F x 0
78 58 77 syl F dom 1 1 x if 0 F x F x 0
79 76 78 eqeltrd F dom 1 2 x if x 0 F x F x 0
80 13 iblrelem F dom 1 x F x 𝐿 1 x F x MblFn 2 x if x 0 F x F x 0 2 x if x 0 F x F x 0
81 4 40 79 80 mpbir3and F dom 1 x F x 𝐿 1
82 2 81 eqeltrd F dom 1 F 𝐿 1