Step |
Hyp |
Ref |
Expression |
1 |
|
i1ff |
|
2 |
1
|
feqmptd |
|
3 |
|
i1fmbf |
|
4 |
2 3
|
eqeltrrd |
|
5 |
|
simpr |
|
6 |
5
|
biantrurd |
|
7 |
6
|
ifbid |
|
8 |
7
|
mpteq2dva |
|
9 |
8
|
fveq2d |
|
10 |
|
eqid |
|
11 |
10
|
i1fpos |
|
12 |
|
0re |
|
13 |
1
|
ffvelrnda |
|
14 |
|
max1 |
|
15 |
12 13 14
|
sylancr |
|
16 |
15
|
ralrimiva |
|
17 |
|
reex |
|
18 |
17
|
a1i |
|
19 |
12
|
a1i |
|
20 |
|
fvex |
|
21 |
|
c0ex |
|
22 |
20 21
|
ifex |
|
23 |
22
|
a1i |
|
24 |
|
fconstmpt |
|
25 |
24
|
a1i |
|
26 |
|
eqidd |
|
27 |
18 19 23 25 26
|
ofrfval2 |
|
28 |
16 27
|
mpbird |
|
29 |
|
ax-resscn |
|
30 |
29
|
a1i |
|
31 |
22 10
|
fnmpti |
|
32 |
31
|
a1i |
|
33 |
30 32
|
0pledm |
|
34 |
28 33
|
mpbird |
|
35 |
|
itg2itg1 |
|
36 |
11 34 35
|
syl2anc |
|
37 |
9 36
|
eqtr3d |
|
38 |
|
itg1cl |
|
39 |
11 38
|
syl |
|
40 |
37 39
|
eqeltrd |
|
41 |
5
|
biantrurd |
|
42 |
41
|
ifbid |
|
43 |
42
|
mpteq2dva |
|
44 |
43
|
fveq2d |
|
45 |
|
neg1rr |
|
46 |
45
|
a1i |
|
47 |
|
fconstmpt |
|
48 |
47
|
a1i |
|
49 |
18 46 13 48 2
|
offval2 |
|
50 |
13
|
recnd |
|
51 |
50
|
mulm1d |
|
52 |
51
|
mpteq2dva |
|
53 |
49 52
|
eqtrd |
|
54 |
|
id |
|
55 |
45
|
a1i |
|
56 |
54 55
|
i1fmulc |
|
57 |
53 56
|
eqeltrrd |
|
58 |
57
|
i1fposd |
|
59 |
13
|
renegcld |
|
60 |
|
max1 |
|
61 |
12 59 60
|
sylancr |
|
62 |
61
|
ralrimiva |
|
63 |
|
negex |
|
64 |
63 21
|
ifex |
|
65 |
64
|
a1i |
|
66 |
|
eqidd |
|
67 |
18 19 65 25 66
|
ofrfval2 |
|
68 |
62 67
|
mpbird |
|
69 |
|
eqid |
|
70 |
64 69
|
fnmpti |
|
71 |
70
|
a1i |
|
72 |
30 71
|
0pledm |
|
73 |
68 72
|
mpbird |
|
74 |
|
itg2itg1 |
|
75 |
58 73 74
|
syl2anc |
|
76 |
44 75
|
eqtr3d |
|
77 |
|
itg1cl |
|
78 |
58 77
|
syl |
|
79 |
76 78
|
eqeltrd |
|
80 |
13
|
iblrelem |
|
81 |
4 40 79 80
|
mpbir3and |
|
82 |
2 81
|
eqeltrd |
|