Metamath Proof Explorer


Theorem i1fima

Description: Any preimage of a simple function is measurable. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion i1fima F dom 1 F -1 A dom vol

Proof

Step Hyp Ref Expression
1 i1ff F dom 1 F :
2 ffun F : Fun F
3 inpreima Fun F F -1 A ran F = F -1 A F -1 ran F
4 iunid y A ran F y = A ran F
5 4 imaeq2i F -1 y A ran F y = F -1 A ran F
6 imaiun F -1 y A ran F y = y A ran F F -1 y
7 5 6 eqtr3i F -1 A ran F = y A ran F F -1 y
8 cnvimass F -1 A dom F
9 cnvimarndm F -1 ran F = dom F
10 8 9 sseqtrri F -1 A F -1 ran F
11 df-ss F -1 A F -1 ran F F -1 A F -1 ran F = F -1 A
12 10 11 mpbi F -1 A F -1 ran F = F -1 A
13 3 7 12 3eqtr3g Fun F y A ran F F -1 y = F -1 A
14 1 2 13 3syl F dom 1 y A ran F F -1 y = F -1 A
15 i1frn F dom 1 ran F Fin
16 inss2 A ran F ran F
17 ssfi ran F Fin A ran F ran F A ran F Fin
18 15 16 17 sylancl F dom 1 A ran F Fin
19 i1fmbf F dom 1 F MblFn
20 19 adantr F dom 1 y A ran F F MblFn
21 1 adantr F dom 1 y A ran F F :
22 1 frnd F dom 1 ran F
23 16 22 sstrid F dom 1 A ran F
24 23 sselda F dom 1 y A ran F y
25 mbfimasn F MblFn F : y F -1 y dom vol
26 20 21 24 25 syl3anc F dom 1 y A ran F F -1 y dom vol
27 26 ralrimiva F dom 1 y A ran F F -1 y dom vol
28 finiunmbl A ran F Fin y A ran F F -1 y dom vol y A ran F F -1 y dom vol
29 18 27 28 syl2anc F dom 1 y A ran F F -1 y dom vol
30 14 29 eqeltrrd F dom 1 F -1 A dom vol