Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
i1fima2sn
Next ⟩
i1fd
Metamath Proof Explorer
Ascii
Unicode
Theorem
i1fima2sn
Description:
Preimage of a singleton.
(Contributed by
Mario Carneiro
, 26-Jun-2014)
Ref
Expression
Assertion
i1fima2sn
⊢
F
∈
dom
⁡
∫
1
∧
A
∈
B
∖
0
→
vol
⁡
F
-1
A
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
eldifn
⊢
A
∈
B
∖
0
→
¬
A
∈
0
2
elsni
⊢
0
∈
A
→
0
=
A
3
snidg
⊢
0
∈
A
→
0
∈
0
4
2
3
eqeltrrd
⊢
0
∈
A
→
A
∈
0
5
1
4
nsyl
⊢
A
∈
B
∖
0
→
¬
0
∈
A
6
i1fima2
⊢
F
∈
dom
⁡
∫
1
∧
¬
0
∈
A
→
vol
⁡
F
-1
A
∈
ℝ
7
5
6
sylan2
⊢
F
∈
dom
⁡
∫
1
∧
A
∈
B
∖
0
→
vol
⁡
F
-1
A
∈
ℝ