Metamath Proof Explorer


Theorem i1fima2sn

Description: Preimage of a singleton. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion i1fima2sn F dom 1 A B 0 vol F -1 A

Proof

Step Hyp Ref Expression
1 eldifn A B 0 ¬ A 0
2 elsni 0 A 0 = A
3 snidg 0 A 0 0
4 2 3 eqeltrrd 0 A A 0
5 1 4 nsyl A B 0 ¬ 0 A
6 i1fima2 F dom 1 ¬ 0 A vol F -1 A
7 5 6 sylan2 F dom 1 A B 0 vol F -1 A