| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1fadd.1 |  | 
						
							| 2 |  | i1fadd.2 |  | 
						
							| 3 |  | remulcl |  | 
						
							| 4 | 3 | adantl |  | 
						
							| 5 |  | i1ff |  | 
						
							| 6 | 1 5 | syl |  | 
						
							| 7 |  | i1ff |  | 
						
							| 8 | 2 7 | syl |  | 
						
							| 9 |  | reex |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 |  | inidm |  | 
						
							| 12 | 4 6 8 10 10 11 | off |  | 
						
							| 13 |  | i1frn |  | 
						
							| 14 | 1 13 | syl |  | 
						
							| 15 |  | i1frn |  | 
						
							| 16 | 2 15 | syl |  | 
						
							| 17 |  | xpfi |  | 
						
							| 18 | 14 16 17 | syl2anc |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 |  | ovex |  | 
						
							| 21 | 19 20 | fnmpoi |  | 
						
							| 22 |  | dffn4 |  | 
						
							| 23 | 21 22 | mpbi |  | 
						
							| 24 |  | fofi |  | 
						
							| 25 | 18 23 24 | sylancl |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 |  | rspceov |  | 
						
							| 28 | 26 27 | mp3an3 |  | 
						
							| 29 |  | ovex |  | 
						
							| 30 |  | eqeq1 |  | 
						
							| 31 | 30 | 2rexbidv |  | 
						
							| 32 | 29 31 | elab |  | 
						
							| 33 | 28 32 | sylibr |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 | 6 | ffnd |  | 
						
							| 36 |  | dffn3 |  | 
						
							| 37 | 35 36 | sylib |  | 
						
							| 38 | 8 | ffnd |  | 
						
							| 39 |  | dffn3 |  | 
						
							| 40 | 38 39 | sylib |  | 
						
							| 41 | 34 37 40 10 10 11 | off |  | 
						
							| 42 | 41 | frnd |  | 
						
							| 43 | 19 | rnmpo |  | 
						
							| 44 | 42 43 | sseqtrrdi |  | 
						
							| 45 | 25 44 | ssfid |  | 
						
							| 46 | 12 | frnd |  | 
						
							| 47 |  | ax-resscn |  | 
						
							| 48 | 46 47 | sstrdi |  | 
						
							| 49 | 48 | ssdifd |  | 
						
							| 50 | 49 | sselda |  | 
						
							| 51 | 1 2 | i1fmullem |  | 
						
							| 52 | 50 51 | syldan |  | 
						
							| 53 |  | difss |  | 
						
							| 54 |  | ssfi |  | 
						
							| 55 | 16 53 54 | sylancl |  | 
						
							| 56 |  | i1fima |  | 
						
							| 57 | 1 56 | syl |  | 
						
							| 58 |  | i1fima |  | 
						
							| 59 | 2 58 | syl |  | 
						
							| 60 |  | inmbl |  | 
						
							| 61 | 57 59 60 | syl2anc |  | 
						
							| 62 | 61 | ralrimivw |  | 
						
							| 63 |  | finiunmbl |  | 
						
							| 64 | 55 62 63 | syl2anc |  | 
						
							| 65 | 64 | adantr |  | 
						
							| 66 | 52 65 | eqeltrd |  | 
						
							| 67 |  | mblvol |  | 
						
							| 68 | 66 67 | syl |  | 
						
							| 69 |  | mblss |  | 
						
							| 70 | 66 69 | syl |  | 
						
							| 71 | 55 | adantr |  | 
						
							| 72 |  | inss2 |  | 
						
							| 73 | 72 | a1i |  | 
						
							| 74 | 59 | ad2antrr |  | 
						
							| 75 |  | mblss |  | 
						
							| 76 | 74 75 | syl |  | 
						
							| 77 |  | mblvol |  | 
						
							| 78 | 74 77 | syl |  | 
						
							| 79 | 2 | adantr |  | 
						
							| 80 |  | i1fima2sn |  | 
						
							| 81 | 79 80 | sylan |  | 
						
							| 82 | 78 81 | eqeltrrd |  | 
						
							| 83 |  | ovolsscl |  | 
						
							| 84 | 73 76 82 83 | syl3anc |  | 
						
							| 85 | 71 84 | fsumrecl |  | 
						
							| 86 | 52 | fveq2d |  | 
						
							| 87 |  | mblss |  | 
						
							| 88 | 61 87 | syl |  | 
						
							| 89 | 88 | ad2antrr |  | 
						
							| 90 | 89 84 | jca |  | 
						
							| 91 | 90 | ralrimiva |  | 
						
							| 92 |  | ovolfiniun |  | 
						
							| 93 | 71 91 92 | syl2anc |  | 
						
							| 94 | 86 93 | eqbrtrd |  | 
						
							| 95 |  | ovollecl |  | 
						
							| 96 | 70 85 94 95 | syl3anc |  | 
						
							| 97 | 68 96 | eqeltrd |  | 
						
							| 98 | 12 45 66 97 | i1fd |  |