| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fmulc.2 |
|
| 2 |
|
i1fmulc.3 |
|
| 3 |
|
reex |
|
| 4 |
3
|
a1i |
|
| 5 |
|
i1ff |
|
| 6 |
1 5
|
syl |
|
| 7 |
6
|
adantr |
|
| 8 |
2
|
adantr |
|
| 9 |
|
0red |
|
| 10 |
|
simplr |
|
| 11 |
10
|
oveq1d |
|
| 12 |
|
mul02lem2 |
|
| 13 |
12
|
adantl |
|
| 14 |
11 13
|
eqtrd |
|
| 15 |
4 7 8 9 14
|
caofid2 |
|
| 16 |
|
i1f0 |
|
| 17 |
15 16
|
eqeltrdi |
|
| 18 |
|
remulcl |
|
| 19 |
18
|
adantl |
|
| 20 |
|
fconst6g |
|
| 21 |
2 20
|
syl |
|
| 22 |
3
|
a1i |
|
| 23 |
|
inidm |
|
| 24 |
19 21 6 22 22 23
|
off |
|
| 25 |
24
|
adantr |
|
| 26 |
|
i1frn |
|
| 27 |
1 26
|
syl |
|
| 28 |
|
ovex |
|
| 29 |
|
eqid |
|
| 30 |
28 29
|
fnmpti |
|
| 31 |
|
dffn4 |
|
| 32 |
30 31
|
mpbi |
|
| 33 |
|
fofi |
|
| 34 |
27 32 33
|
sylancl |
|
| 35 |
|
id |
|
| 36 |
|
elsni |
|
| 37 |
36
|
oveq1d |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
rspceeqv |
|
| 40 |
35 37 39
|
syl2anr |
|
| 41 |
|
ovex |
|
| 42 |
|
eqeq1 |
|
| 43 |
42
|
rexbidv |
|
| 44 |
41 43
|
elab |
|
| 45 |
40 44
|
sylibr |
|
| 46 |
45
|
adantl |
|
| 47 |
|
fconstg |
|
| 48 |
2 47
|
syl |
|
| 49 |
6
|
ffnd |
|
| 50 |
|
dffn3 |
|
| 51 |
49 50
|
sylib |
|
| 52 |
46 48 51 22 22 23
|
off |
|
| 53 |
52
|
frnd |
|
| 54 |
29
|
rnmpt |
|
| 55 |
53 54
|
sseqtrrdi |
|
| 56 |
34 55
|
ssfid |
|
| 57 |
56
|
adantr |
|
| 58 |
24
|
frnd |
|
| 59 |
58
|
ssdifssd |
|
| 60 |
59
|
adantr |
|
| 61 |
60
|
sselda |
|
| 62 |
1 2
|
i1fmulclem |
|
| 63 |
61 62
|
syldan |
|
| 64 |
|
i1fima |
|
| 65 |
1 64
|
syl |
|
| 66 |
65
|
ad2antrr |
|
| 67 |
63 66
|
eqeltrd |
|
| 68 |
63
|
fveq2d |
|
| 69 |
1
|
ad2antrr |
|
| 70 |
2
|
ad2antrr |
|
| 71 |
|
simplr |
|
| 72 |
61 70 71
|
redivcld |
|
| 73 |
61
|
recnd |
|
| 74 |
70
|
recnd |
|
| 75 |
|
eldifsni |
|
| 76 |
75
|
adantl |
|
| 77 |
73 74 76 71
|
divne0d |
|
| 78 |
|
eldifsn |
|
| 79 |
72 77 78
|
sylanbrc |
|
| 80 |
|
i1fima2sn |
|
| 81 |
69 79 80
|
syl2anc |
|
| 82 |
68 81
|
eqeltrd |
|
| 83 |
25 57 67 82
|
i1fd |
|
| 84 |
17 83
|
pm2.61dane |
|