Step |
Hyp |
Ref |
Expression |
1 |
|
i1fmulc.2 |
|
2 |
|
i1fmulc.3 |
|
3 |
|
reex |
|
4 |
3
|
a1i |
|
5 |
|
i1ff |
|
6 |
1 5
|
syl |
|
7 |
6
|
adantr |
|
8 |
2
|
adantr |
|
9 |
|
0red |
|
10 |
|
simplr |
|
11 |
10
|
oveq1d |
|
12 |
|
mul02lem2 |
|
13 |
12
|
adantl |
|
14 |
11 13
|
eqtrd |
|
15 |
4 7 8 9 14
|
caofid2 |
|
16 |
|
i1f0 |
|
17 |
15 16
|
eqeltrdi |
|
18 |
|
remulcl |
|
19 |
18
|
adantl |
|
20 |
|
fconst6g |
|
21 |
2 20
|
syl |
|
22 |
3
|
a1i |
|
23 |
|
inidm |
|
24 |
19 21 6 22 22 23
|
off |
|
25 |
24
|
adantr |
|
26 |
|
i1frn |
|
27 |
1 26
|
syl |
|
28 |
|
ovex |
|
29 |
|
eqid |
|
30 |
28 29
|
fnmpti |
|
31 |
|
dffn4 |
|
32 |
30 31
|
mpbi |
|
33 |
|
fofi |
|
34 |
27 32 33
|
sylancl |
|
35 |
|
id |
|
36 |
|
elsni |
|
37 |
36
|
oveq1d |
|
38 |
|
oveq2 |
|
39 |
38
|
rspceeqv |
|
40 |
35 37 39
|
syl2anr |
|
41 |
|
ovex |
|
42 |
|
eqeq1 |
|
43 |
42
|
rexbidv |
|
44 |
41 43
|
elab |
|
45 |
40 44
|
sylibr |
|
46 |
45
|
adantl |
|
47 |
|
fconstg |
|
48 |
2 47
|
syl |
|
49 |
6
|
ffnd |
|
50 |
|
dffn3 |
|
51 |
49 50
|
sylib |
|
52 |
46 48 51 22 22 23
|
off |
|
53 |
52
|
frnd |
|
54 |
29
|
rnmpt |
|
55 |
53 54
|
sseqtrrdi |
|
56 |
34 55
|
ssfid |
|
57 |
56
|
adantr |
|
58 |
24
|
frnd |
|
59 |
58
|
ssdifssd |
|
60 |
59
|
adantr |
|
61 |
60
|
sselda |
|
62 |
1 2
|
i1fmulclem |
|
63 |
61 62
|
syldan |
|
64 |
|
i1fima |
|
65 |
1 64
|
syl |
|
66 |
65
|
ad2antrr |
|
67 |
63 66
|
eqeltrd |
|
68 |
63
|
fveq2d |
|
69 |
1
|
ad2antrr |
|
70 |
2
|
ad2antrr |
|
71 |
|
simplr |
|
72 |
61 70 71
|
redivcld |
|
73 |
61
|
recnd |
|
74 |
70
|
recnd |
|
75 |
|
eldifsni |
|
76 |
75
|
adantl |
|
77 |
73 74 76 71
|
divne0d |
|
78 |
|
eldifsn |
|
79 |
72 77 78
|
sylanbrc |
|
80 |
|
i1fima2sn |
|
81 |
69 79 80
|
syl2anc |
|
82 |
68 81
|
eqeltrd |
|
83 |
25 57 67 82
|
i1fd |
|
84 |
17 83
|
pm2.61dane |
|