Metamath Proof Explorer


Theorem i1fmulc

Description: A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses i1fmulc.2 φ F dom 1
i1fmulc.3 φ A
Assertion i1fmulc φ × A × f F dom 1

Proof

Step Hyp Ref Expression
1 i1fmulc.2 φ F dom 1
2 i1fmulc.3 φ A
3 reex V
4 3 a1i φ A = 0 V
5 i1ff F dom 1 F :
6 1 5 syl φ F :
7 6 adantr φ A = 0 F :
8 2 adantr φ A = 0 A
9 0red φ A = 0 0
10 simplr φ A = 0 x A = 0
11 10 oveq1d φ A = 0 x A x = 0 x
12 mul02lem2 x 0 x = 0
13 12 adantl φ A = 0 x 0 x = 0
14 11 13 eqtrd φ A = 0 x A x = 0
15 4 7 8 9 14 caofid2 φ A = 0 × A × f F = × 0
16 i1f0 × 0 dom 1
17 15 16 eqeltrdi φ A = 0 × A × f F dom 1
18 remulcl x y x y
19 18 adantl φ x y x y
20 fconst6g A × A :
21 2 20 syl φ × A :
22 3 a1i φ V
23 inidm =
24 19 21 6 22 22 23 off φ × A × f F :
25 24 adantr φ A 0 × A × f F :
26 i1frn F dom 1 ran F Fin
27 1 26 syl φ ran F Fin
28 ovex A y V
29 eqid y ran F A y = y ran F A y
30 28 29 fnmpti y ran F A y Fn ran F
31 dffn4 y ran F A y Fn ran F y ran F A y : ran F onto ran y ran F A y
32 30 31 mpbi y ran F A y : ran F onto ran y ran F A y
33 fofi ran F Fin y ran F A y : ran F onto ran y ran F A y ran y ran F A y Fin
34 27 32 33 sylancl φ ran y ran F A y Fin
35 id w ran F w ran F
36 elsni x A x = A
37 36 oveq1d x A x w = A w
38 oveq2 y = w A y = A w
39 38 rspceeqv w ran F x w = A w y ran F x w = A y
40 35 37 39 syl2anr x A w ran F y ran F x w = A y
41 ovex x w V
42 eqeq1 z = x w z = A y x w = A y
43 42 rexbidv z = x w y ran F z = A y y ran F x w = A y
44 41 43 elab x w z | y ran F z = A y y ran F x w = A y
45 40 44 sylibr x A w ran F x w z | y ran F z = A y
46 45 adantl φ x A w ran F x w z | y ran F z = A y
47 fconstg A × A : A
48 2 47 syl φ × A : A
49 6 ffnd φ F Fn
50 dffn3 F Fn F : ran F
51 49 50 sylib φ F : ran F
52 46 48 51 22 22 23 off φ × A × f F : z | y ran F z = A y
53 52 frnd φ ran × A × f F z | y ran F z = A y
54 29 rnmpt ran y ran F A y = z | y ran F z = A y
55 53 54 sseqtrrdi φ ran × A × f F ran y ran F A y
56 34 55 ssfid φ ran × A × f F Fin
57 56 adantr φ A 0 ran × A × f F Fin
58 24 frnd φ ran × A × f F
59 58 ssdifssd φ ran × A × f F 0
60 59 adantr φ A 0 ran × A × f F 0
61 60 sselda φ A 0 y ran × A × f F 0 y
62 1 2 i1fmulclem φ A 0 y × A × f F -1 y = F -1 y A
63 61 62 syldan φ A 0 y ran × A × f F 0 × A × f F -1 y = F -1 y A
64 i1fima F dom 1 F -1 y A dom vol
65 1 64 syl φ F -1 y A dom vol
66 65 ad2antrr φ A 0 y ran × A × f F 0 F -1 y A dom vol
67 63 66 eqeltrd φ A 0 y ran × A × f F 0 × A × f F -1 y dom vol
68 63 fveq2d φ A 0 y ran × A × f F 0 vol × A × f F -1 y = vol F -1 y A
69 1 ad2antrr φ A 0 y ran × A × f F 0 F dom 1
70 2 ad2antrr φ A 0 y ran × A × f F 0 A
71 simplr φ A 0 y ran × A × f F 0 A 0
72 61 70 71 redivcld φ A 0 y ran × A × f F 0 y A
73 61 recnd φ A 0 y ran × A × f F 0 y
74 70 recnd φ A 0 y ran × A × f F 0 A
75 eldifsni y ran × A × f F 0 y 0
76 75 adantl φ A 0 y ran × A × f F 0 y 0
77 73 74 76 71 divne0d φ A 0 y ran × A × f F 0 y A 0
78 eldifsn y A 0 y A y A 0
79 72 77 78 sylanbrc φ A 0 y ran × A × f F 0 y A 0
80 i1fima2sn F dom 1 y A 0 vol F -1 y A
81 69 79 80 syl2anc φ A 0 y ran × A × f F 0 vol F -1 y A
82 68 81 eqeltrd φ A 0 y ran × A × f F 0 vol × A × f F -1 y
83 25 57 67 82 i1fd φ A 0 × A × f F dom 1
84 17 83 pm2.61dane φ × A × f F dom 1