Step |
Hyp |
Ref |
Expression |
1 |
|
i1fmulc.2 |
|
2 |
|
i1fmulc.3 |
|
3 |
|
reex |
|
4 |
3
|
a1i |
|
5 |
|
i1ff |
|
6 |
1 5
|
syl |
|
7 |
6
|
ffnd |
|
8 |
|
eqidd |
|
9 |
4 2 7 8
|
ofc1 |
|
10 |
9
|
ad4ant14 |
|
11 |
10
|
eqeq1d |
|
12 |
|
eqcom |
|
13 |
|
simplr |
|
14 |
13
|
recnd |
|
15 |
2
|
ad3antrrr |
|
16 |
15
|
recnd |
|
17 |
6
|
ad2antrr |
|
18 |
17
|
ffvelrnda |
|
19 |
18
|
recnd |
|
20 |
|
simpllr |
|
21 |
14 16 19 20
|
divmuld |
|
22 |
12 21
|
syl5bb |
|
23 |
11 22
|
bitr4d |
|
24 |
23
|
pm5.32da |
|
25 |
|
remulcl |
|
26 |
25
|
adantl |
|
27 |
|
fconstg |
|
28 |
2 27
|
syl |
|
29 |
2
|
snssd |
|
30 |
28 29
|
fssd |
|
31 |
|
inidm |
|
32 |
26 30 6 4 4 31
|
off |
|
33 |
32
|
ad2antrr |
|
34 |
33
|
ffnd |
|
35 |
|
fniniseg |
|
36 |
34 35
|
syl |
|
37 |
17
|
ffnd |
|
38 |
|
fniniseg |
|
39 |
37 38
|
syl |
|
40 |
24 36 39
|
3bitr4d |
|
41 |
40
|
eqrdv |
|