Metamath Proof Explorer


Theorem i1fmulclem

Description: Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses i1fmulc.2 φ F dom 1
i1fmulc.3 φ A
Assertion i1fmulclem φ A 0 B × A × f F -1 B = F -1 B A

Proof

Step Hyp Ref Expression
1 i1fmulc.2 φ F dom 1
2 i1fmulc.3 φ A
3 reex V
4 3 a1i φ V
5 i1ff F dom 1 F :
6 1 5 syl φ F :
7 6 ffnd φ F Fn
8 eqidd φ z F z = F z
9 4 2 7 8 ofc1 φ z × A × f F z = A F z
10 9 ad4ant14 φ A 0 B z × A × f F z = A F z
11 10 eqeq1d φ A 0 B z × A × f F z = B A F z = B
12 eqcom F z = B A B A = F z
13 simplr φ A 0 B z B
14 13 recnd φ A 0 B z B
15 2 ad3antrrr φ A 0 B z A
16 15 recnd φ A 0 B z A
17 6 ad2antrr φ A 0 B F :
18 17 ffvelrnda φ A 0 B z F z
19 18 recnd φ A 0 B z F z
20 simpllr φ A 0 B z A 0
21 14 16 19 20 divmuld φ A 0 B z B A = F z A F z = B
22 12 21 syl5bb φ A 0 B z F z = B A A F z = B
23 11 22 bitr4d φ A 0 B z × A × f F z = B F z = B A
24 23 pm5.32da φ A 0 B z × A × f F z = B z F z = B A
25 remulcl x y x y
26 25 adantl φ x y x y
27 fconstg A × A : A
28 2 27 syl φ × A : A
29 2 snssd φ A
30 28 29 fssd φ × A :
31 inidm =
32 26 30 6 4 4 31 off φ × A × f F :
33 32 ad2antrr φ A 0 B × A × f F :
34 33 ffnd φ A 0 B × A × f F Fn
35 fniniseg × A × f F Fn z × A × f F -1 B z × A × f F z = B
36 34 35 syl φ A 0 B z × A × f F -1 B z × A × f F z = B
37 17 ffnd φ A 0 B F Fn
38 fniniseg F Fn z F -1 B A z F z = B A
39 37 38 syl φ A 0 B z F -1 B A z F z = B A
40 24 36 39 3bitr4d φ A 0 B z × A × f F -1 B z F -1 B A
41 40 eqrdv φ A 0 B × A × f F -1 B = F -1 B A