| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fmulc.2 |
|
| 2 |
|
i1fmulc.3 |
|
| 3 |
|
reex |
|
| 4 |
3
|
a1i |
|
| 5 |
|
i1ff |
|
| 6 |
1 5
|
syl |
|
| 7 |
6
|
ffnd |
|
| 8 |
|
eqidd |
|
| 9 |
4 2 7 8
|
ofc1 |
|
| 10 |
9
|
ad4ant14 |
|
| 11 |
10
|
eqeq1d |
|
| 12 |
|
eqcom |
|
| 13 |
|
simplr |
|
| 14 |
13
|
recnd |
|
| 15 |
2
|
ad3antrrr |
|
| 16 |
15
|
recnd |
|
| 17 |
6
|
ad2antrr |
|
| 18 |
17
|
ffvelcdmda |
|
| 19 |
18
|
recnd |
|
| 20 |
|
simpllr |
|
| 21 |
14 16 19 20
|
divmuld |
|
| 22 |
12 21
|
bitrid |
|
| 23 |
11 22
|
bitr4d |
|
| 24 |
23
|
pm5.32da |
|
| 25 |
|
remulcl |
|
| 26 |
25
|
adantl |
|
| 27 |
|
fconstg |
|
| 28 |
2 27
|
syl |
|
| 29 |
2
|
snssd |
|
| 30 |
28 29
|
fssd |
|
| 31 |
|
inidm |
|
| 32 |
26 30 6 4 4 31
|
off |
|
| 33 |
32
|
ad2antrr |
|
| 34 |
33
|
ffnd |
|
| 35 |
|
fniniseg |
|
| 36 |
34 35
|
syl |
|
| 37 |
17
|
ffnd |
|
| 38 |
|
fniniseg |
|
| 39 |
37 38
|
syl |
|
| 40 |
24 36 39
|
3bitr4d |
|
| 41 |
40
|
eqrdv |
|