Metamath Proof Explorer


Theorem i1fmullem

Description: Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φ F dom 1
i1fadd.2 φ G dom 1
Assertion i1fmullem φ A 0 F × f G -1 A = y ran G 0 F -1 A y G -1 y

Proof

Step Hyp Ref Expression
1 i1fadd.1 φ F dom 1
2 i1fadd.2 φ G dom 1
3 i1ff F dom 1 F :
4 1 3 syl φ F :
5 4 ffnd φ F Fn
6 i1ff G dom 1 G :
7 2 6 syl φ G :
8 7 ffnd φ G Fn
9 reex V
10 9 a1i φ V
11 inidm =
12 5 8 10 10 11 offn φ F × f G Fn
13 12 adantr φ A 0 F × f G Fn
14 fniniseg F × f G Fn z F × f G -1 A z F × f G z = A
15 13 14 syl φ A 0 z F × f G -1 A z F × f G z = A
16 5 adantr φ A 0 F Fn
17 8 adantr φ A 0 G Fn
18 9 a1i φ A 0 V
19 eqidd φ A 0 z F z = F z
20 eqidd φ A 0 z G z = G z
21 16 17 18 18 11 19 20 ofval φ A 0 z F × f G z = F z G z
22 21 eqeq1d φ A 0 z F × f G z = A F z G z = A
23 22 pm5.32da φ A 0 z F × f G z = A z F z G z = A
24 8 ad2antrr φ A 0 z F z G z = A G Fn
25 simprl φ A 0 z F z G z = A z
26 fnfvelrn G Fn z G z ran G
27 24 25 26 syl2anc φ A 0 z F z G z = A G z ran G
28 eldifsni A 0 A 0
29 28 ad2antlr φ A 0 z F z G z = A A 0
30 simprr φ A 0 z F z G z = A F z G z = A
31 4 ad2antrr φ A 0 z F z G z = A F :
32 31 25 ffvelrnd φ A 0 z F z G z = A F z
33 32 recnd φ A 0 z F z G z = A F z
34 33 mul01d φ A 0 z F z G z = A F z 0 = 0
35 29 30 34 3netr4d φ A 0 z F z G z = A F z G z F z 0
36 oveq2 G z = 0 F z G z = F z 0
37 36 necon3i F z G z F z 0 G z 0
38 35 37 syl φ A 0 z F z G z = A G z 0
39 eldifsn G z ran G 0 G z ran G G z 0
40 27 38 39 sylanbrc φ A 0 z F z G z = A G z ran G 0
41 7 ad2antrr φ A 0 z F z G z = A G :
42 41 25 ffvelrnd φ A 0 z F z G z = A G z
43 42 recnd φ A 0 z F z G z = A G z
44 33 43 38 divcan4d φ A 0 z F z G z = A F z G z G z = F z
45 30 oveq1d φ A 0 z F z G z = A F z G z G z = A G z
46 44 45 eqtr3d φ A 0 z F z G z = A F z = A G z
47 31 ffnd φ A 0 z F z G z = A F Fn
48 fniniseg F Fn z F -1 A G z z F z = A G z
49 47 48 syl φ A 0 z F z G z = A z F -1 A G z z F z = A G z
50 25 46 49 mpbir2and φ A 0 z F z G z = A z F -1 A G z
51 eqidd φ A 0 z F z G z = A G z = G z
52 fniniseg G Fn z G -1 G z z G z = G z
53 24 52 syl φ A 0 z F z G z = A z G -1 G z z G z = G z
54 25 51 53 mpbir2and φ A 0 z F z G z = A z G -1 G z
55 50 54 elind φ A 0 z F z G z = A z F -1 A G z G -1 G z
56 oveq2 y = G z A y = A G z
57 56 sneqd y = G z A y = A G z
58 57 imaeq2d y = G z F -1 A y = F -1 A G z
59 sneq y = G z y = G z
60 59 imaeq2d y = G z G -1 y = G -1 G z
61 58 60 ineq12d y = G z F -1 A y G -1 y = F -1 A G z G -1 G z
62 61 eleq2d y = G z z F -1 A y G -1 y z F -1 A G z G -1 G z
63 62 rspcev G z ran G 0 z F -1 A G z G -1 G z y ran G 0 z F -1 A y G -1 y
64 40 55 63 syl2anc φ A 0 z F z G z = A y ran G 0 z F -1 A y G -1 y
65 64 ex φ A 0 z F z G z = A y ran G 0 z F -1 A y G -1 y
66 fniniseg F Fn z F -1 A y z F z = A y
67 16 66 syl φ A 0 z F -1 A y z F z = A y
68 fniniseg G Fn z G -1 y z G z = y
69 17 68 syl φ A 0 z G -1 y z G z = y
70 67 69 anbi12d φ A 0 z F -1 A y z G -1 y z F z = A y z G z = y
71 elin z F -1 A y G -1 y z F -1 A y z G -1 y
72 anandi z F z = A y G z = y z F z = A y z G z = y
73 70 71 72 3bitr4g φ A 0 z F -1 A y G -1 y z F z = A y G z = y
74 73 adantr φ A 0 y ran G 0 z F -1 A y G -1 y z F z = A y G z = y
75 eldifi A 0 A
76 75 ad2antlr φ A 0 y ran G 0 z A
77 7 ad2antrr φ A 0 y ran G 0 z G :
78 77 frnd φ A 0 y ran G 0 z ran G
79 simprl φ A 0 y ran G 0 z y ran G 0
80 eldifsn y ran G 0 y ran G y 0
81 79 80 sylib φ A 0 y ran G 0 z y ran G y 0
82 81 simpld φ A 0 y ran G 0 z y ran G
83 78 82 sseldd φ A 0 y ran G 0 z y
84 83 recnd φ A 0 y ran G 0 z y
85 81 simprd φ A 0 y ran G 0 z y 0
86 76 84 85 divcan1d φ A 0 y ran G 0 z A y y = A
87 oveq12 F z = A y G z = y F z G z = A y y
88 87 eqeq1d F z = A y G z = y F z G z = A A y y = A
89 86 88 syl5ibrcom φ A 0 y ran G 0 z F z = A y G z = y F z G z = A
90 89 anassrs φ A 0 y ran G 0 z F z = A y G z = y F z G z = A
91 90 imdistanda φ A 0 y ran G 0 z F z = A y G z = y z F z G z = A
92 74 91 sylbid φ A 0 y ran G 0 z F -1 A y G -1 y z F z G z = A
93 92 rexlimdva φ A 0 y ran G 0 z F -1 A y G -1 y z F z G z = A
94 65 93 impbid φ A 0 z F z G z = A y ran G 0 z F -1 A y G -1 y
95 15 23 94 3bitrd φ A 0 z F × f G -1 A y ran G 0 z F -1 A y G -1 y
96 eliun z y ran G 0 F -1 A y G -1 y y ran G 0 z F -1 A y G -1 y
97 95 96 bitr4di φ A 0 z F × f G -1 A z y ran G 0 F -1 A y G -1 y
98 97 eqrdv φ A 0 F × f G -1 A = y ran G 0 F -1 A y G -1 y