| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1fadd.1 |  | 
						
							| 2 |  | i1fadd.2 |  | 
						
							| 3 |  | i1ff |  | 
						
							| 4 | 1 3 | syl |  | 
						
							| 5 | 4 | ffnd |  | 
						
							| 6 |  | i1ff |  | 
						
							| 7 | 2 6 | syl |  | 
						
							| 8 | 7 | ffnd |  | 
						
							| 9 |  | reex |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 |  | inidm |  | 
						
							| 12 | 5 8 10 10 11 | offn |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | fniniseg |  | 
						
							| 15 | 13 14 | syl |  | 
						
							| 16 | 5 | adantr |  | 
						
							| 17 | 8 | adantr |  | 
						
							| 18 | 9 | a1i |  | 
						
							| 19 |  | eqidd |  | 
						
							| 20 |  | eqidd |  | 
						
							| 21 | 16 17 18 18 11 19 20 | ofval |  | 
						
							| 22 | 21 | eqeq1d |  | 
						
							| 23 | 22 | pm5.32da |  | 
						
							| 24 | 8 | ad2antrr |  | 
						
							| 25 |  | simprl |  | 
						
							| 26 |  | fnfvelrn |  | 
						
							| 27 | 24 25 26 | syl2anc |  | 
						
							| 28 |  | eldifsni |  | 
						
							| 29 | 28 | ad2antlr |  | 
						
							| 30 |  | simprr |  | 
						
							| 31 | 4 | ad2antrr |  | 
						
							| 32 | 31 25 | ffvelcdmd |  | 
						
							| 33 | 32 | recnd |  | 
						
							| 34 | 33 | mul01d |  | 
						
							| 35 | 29 30 34 | 3netr4d |  | 
						
							| 36 |  | oveq2 |  | 
						
							| 37 | 36 | necon3i |  | 
						
							| 38 | 35 37 | syl |  | 
						
							| 39 |  | eldifsn |  | 
						
							| 40 | 27 38 39 | sylanbrc |  | 
						
							| 41 | 7 | ad2antrr |  | 
						
							| 42 | 41 25 | ffvelcdmd |  | 
						
							| 43 | 42 | recnd |  | 
						
							| 44 | 33 43 38 | divcan4d |  | 
						
							| 45 | 30 | oveq1d |  | 
						
							| 46 | 44 45 | eqtr3d |  | 
						
							| 47 | 31 | ffnd |  | 
						
							| 48 |  | fniniseg |  | 
						
							| 49 | 47 48 | syl |  | 
						
							| 50 | 25 46 49 | mpbir2and |  | 
						
							| 51 |  | eqidd |  | 
						
							| 52 |  | fniniseg |  | 
						
							| 53 | 24 52 | syl |  | 
						
							| 54 | 25 51 53 | mpbir2and |  | 
						
							| 55 | 50 54 | elind |  | 
						
							| 56 |  | oveq2 |  | 
						
							| 57 | 56 | sneqd |  | 
						
							| 58 | 57 | imaeq2d |  | 
						
							| 59 |  | sneq |  | 
						
							| 60 | 59 | imaeq2d |  | 
						
							| 61 | 58 60 | ineq12d |  | 
						
							| 62 | 61 | eleq2d |  | 
						
							| 63 | 62 | rspcev |  | 
						
							| 64 | 40 55 63 | syl2anc |  | 
						
							| 65 | 64 | ex |  | 
						
							| 66 |  | fniniseg |  | 
						
							| 67 | 16 66 | syl |  | 
						
							| 68 |  | fniniseg |  | 
						
							| 69 | 17 68 | syl |  | 
						
							| 70 | 67 69 | anbi12d |  | 
						
							| 71 |  | elin |  | 
						
							| 72 |  | anandi |  | 
						
							| 73 | 70 71 72 | 3bitr4g |  | 
						
							| 74 | 73 | adantr |  | 
						
							| 75 |  | eldifi |  | 
						
							| 76 | 75 | ad2antlr |  | 
						
							| 77 | 7 | ad2antrr |  | 
						
							| 78 | 77 | frnd |  | 
						
							| 79 |  | simprl |  | 
						
							| 80 |  | eldifsn |  | 
						
							| 81 | 79 80 | sylib |  | 
						
							| 82 | 81 | simpld |  | 
						
							| 83 | 78 82 | sseldd |  | 
						
							| 84 | 83 | recnd |  | 
						
							| 85 | 81 | simprd |  | 
						
							| 86 | 76 84 85 | divcan1d |  | 
						
							| 87 |  | oveq12 |  | 
						
							| 88 | 87 | eqeq1d |  | 
						
							| 89 | 86 88 | syl5ibrcom |  | 
						
							| 90 | 89 | anassrs |  | 
						
							| 91 | 90 | imdistanda |  | 
						
							| 92 | 74 91 | sylbid |  | 
						
							| 93 | 92 | rexlimdva |  | 
						
							| 94 | 65 93 | impbid |  | 
						
							| 95 | 15 23 94 | 3bitrd |  | 
						
							| 96 |  | eliun |  | 
						
							| 97 | 95 96 | bitr4di |  | 
						
							| 98 | 97 | eqrdv |  |