Metamath Proof Explorer


Theorem i1fpos

Description: The positive part of a simple function is simple. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis i1fpos.1 G = x if 0 F x F x 0
Assertion i1fpos F dom 1 G dom 1

Proof

Step Hyp Ref Expression
1 i1fpos.1 G = x if 0 F x F x 0
2 simpr F dom 1 x x
3 2 biantrurd F dom 1 x F x 0 +∞ x F x 0 +∞
4 i1ff F dom 1 F :
5 4 ffvelrnda F dom 1 x F x
6 5 biantrurd F dom 1 x 0 F x F x 0 F x
7 elrege0 F x 0 +∞ F x 0 F x
8 6 7 bitr4di F dom 1 x 0 F x F x 0 +∞
9 4 adantr F dom 1 x F :
10 ffn F : F Fn
11 elpreima F Fn x F -1 0 +∞ x F x 0 +∞
12 9 10 11 3syl F dom 1 x x F -1 0 +∞ x F x 0 +∞
13 3 8 12 3bitr4d F dom 1 x 0 F x x F -1 0 +∞
14 13 ifbid F dom 1 x if 0 F x F x 0 = if x F -1 0 +∞ F x 0
15 14 mpteq2dva F dom 1 x if 0 F x F x 0 = x if x F -1 0 +∞ F x 0
16 1 15 syl5eq F dom 1 G = x if x F -1 0 +∞ F x 0
17 i1fima F dom 1 F -1 0 +∞ dom vol
18 eqid x if x F -1 0 +∞ F x 0 = x if x F -1 0 +∞ F x 0
19 18 i1fres F dom 1 F -1 0 +∞ dom vol x if x F -1 0 +∞ F x 0 dom 1
20 17 19 mpdan F dom 1 x if x F -1 0 +∞ F x 0 dom 1
21 16 20 eqeltrd F dom 1 G dom 1