Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
i1frn
Next ⟩
i1fima
Metamath Proof Explorer
Ascii
Unicode
Theorem
i1frn
Description:
A simple function has finite range.
(Contributed by
Mario Carneiro
, 26-Jun-2014)
Ref
Expression
Assertion
i1frn
⊢
F
∈
dom
⁡
∫
1
→
ran
⁡
F
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
isi1f
⊢
F
∈
dom
⁡
∫
1
↔
F
∈
MblFn
∧
F
:
ℝ
⟶
ℝ
∧
ran
⁡
F
∈
Fin
∧
vol
⁡
F
-1
ℝ
∖
0
∈
ℝ
2
1
simprbi
⊢
F
∈
dom
⁡
∫
1
→
F
:
ℝ
⟶
ℝ
∧
ran
⁡
F
∈
Fin
∧
vol
⁡
F
-1
ℝ
∖
0
∈
ℝ
3
2
simp2d
⊢
F
∈
dom
⁡
∫
1
→
ran
⁡
F
∈
Fin