Metamath Proof Explorer


Theorem i1frn

Description: A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion i1frn F dom 1 ran F Fin

Proof

Step Hyp Ref Expression
1 isi1f F dom 1 F MblFn F : ran F Fin vol F -1 0
2 1 simprbi F dom 1 F : ran F Fin vol F -1 0
3 2 simp2d F dom 1 ran F Fin