Metamath Proof Explorer


Theorem i1fsub

Description: The difference of two simple functions is a simple function. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Assertion i1fsub F dom 1 G dom 1 F f G dom 1

Proof

Step Hyp Ref Expression
1 reex V
2 i1ff F dom 1 F :
3 ax-resscn
4 fss F : F :
5 2 3 4 sylancl F dom 1 F :
6 i1ff G dom 1 G :
7 fss G : G :
8 6 3 7 sylancl G dom 1 G :
9 ofnegsub V F : G : F + f × 1 × f G = F f G
10 1 5 8 9 mp3an3an F dom 1 G dom 1 F + f × 1 × f G = F f G
11 simpl F dom 1 G dom 1 F dom 1
12 simpr F dom 1 G dom 1 G dom 1
13 neg1rr 1
14 13 a1i F dom 1 G dom 1 1
15 12 14 i1fmulc F dom 1 G dom 1 × 1 × f G dom 1
16 11 15 i1fadd F dom 1 G dom 1 F + f × 1 × f G dom 1
17 10 16 eqeltrrd F dom 1 G dom 1 F f G dom 1