Metamath Proof Explorer


Theorem i2

Description: _i squared. (Contributed by NM, 6-May-1999)

Ref Expression
Assertion i2 i 2 = 1

Proof

Step Hyp Ref Expression
1 ax-icn i
2 1 sqvali i 2 = i i
3 ixi i i = 1
4 2 3 eqtri i 2 = 1