Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
i3
Next ⟩
i4
Metamath Proof Explorer
Ascii
Unicode
Theorem
i3
Description:
_i
cubed.
(Contributed by
NM
, 31-Jan-2007)
Ref
Expression
Assertion
i3
⊢
i
3
=
−
i
Proof
Step
Hyp
Ref
Expression
1
df-3
⊢
3
=
2
+
1
2
1
oveq2i
⊢
i
3
=
i
2
+
1
3
ax-icn
⊢
i
∈
ℂ
4
2nn0
⊢
2
∈
ℕ
0
5
expp1
⊢
i
∈
ℂ
∧
2
∈
ℕ
0
→
i
2
+
1
=
i
2
⁢
i
6
3
4
5
mp2an
⊢
i
2
+
1
=
i
2
⁢
i
7
i2
⊢
i
2
=
−
1
8
7
oveq1i
⊢
i
2
⁢
i
=
-1
⁢
i
9
3
mulm1i
⊢
-1
⁢
i
=
−
i
10
8
9
eqtri
⊢
i
2
⁢
i
=
−
i
11
6
10
eqtri
⊢
i
2
+
1
=
−
i
12
2
11
eqtri
⊢
i
3
=
−
i