Metamath Proof Explorer


Theorem i3

Description: _i cubed. (Contributed by NM, 31-Jan-2007)

Ref Expression
Assertion i3 i 3 = i

Proof

Step Hyp Ref Expression
1 df-3 3 = 2 + 1
2 1 oveq2i i 3 = i 2 + 1
3 ax-icn i
4 2nn0 2 0
5 expp1 i 2 0 i 2 + 1 = i 2 i
6 3 4 5 mp2an i 2 + 1 = i 2 i
7 i2 i 2 = 1
8 7 oveq1i i 2 i = -1 i
9 3 mulm1i -1 i = i
10 8 9 eqtri i 2 i = i
11 6 10 eqtri i 2 + 1 = i
12 2 11 eqtri i 3 = i