Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
i4
Next ⟩
nnlesq
Metamath Proof Explorer
Ascii
Unicode
Theorem
i4
Description:
_i
to the fourth power.
(Contributed by
NM
, 31-Jan-2007)
Ref
Expression
Assertion
i4
⊢
i
4
=
1
Proof
Step
Hyp
Ref
Expression
1
ax-icn
⊢
i
∈
ℂ
2
2nn0
⊢
2
∈
ℕ
0
3
expadd
⊢
i
∈
ℂ
∧
2
∈
ℕ
0
∧
2
∈
ℕ
0
→
i
2
+
2
=
i
2
⁢
i
2
4
1
2
2
3
mp3an
⊢
i
2
+
2
=
i
2
⁢
i
2
5
2p2e4
⊢
2
+
2
=
4
6
5
oveq2i
⊢
i
2
+
2
=
i
4
7
i2
⊢
i
2
=
−
1
8
7
7
oveq12i
⊢
i
2
⁢
i
2
=
-1
⁢
-1
9
ax-1cn
⊢
1
∈
ℂ
10
9
9
mul2negi
⊢
-1
⁢
-1
=
1
⋅
1
11
1t1e1
⊢
1
⋅
1
=
1
12
8
10
11
3eqtri
⊢
i
2
⁢
i
2
=
1
13
4
6
12
3eqtr3i
⊢
i
4
=
1