Metamath Proof Explorer


Theorem i4

Description: _i to the fourth power. (Contributed by NM, 31-Jan-2007)

Ref Expression
Assertion i4 i 4 = 1

Proof

Step Hyp Ref Expression
1 ax-icn i
2 2nn0 2 0
3 expadd i 2 0 2 0 i 2 + 2 = i 2 i 2
4 1 2 2 3 mp3an i 2 + 2 = i 2 i 2
5 2p2e4 2 + 2 = 4
6 5 oveq2i i 2 + 2 = i 4
7 i2 i 2 = 1
8 7 7 oveq12i i 2 i 2 = -1 -1
9 ax-1cn 1
10 9 9 mul2negi -1 -1 = 1 1
11 1t1e1 1 1 = 1
12 8 10 11 3eqtri i 2 i 2 = 1
13 4 6 12 3eqtr3i i 4 = 1