Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
|
2 |
|
cnex |
|
3 |
2
|
a1i |
|
4 |
|
sqcl |
|
5 |
4
|
adantl |
|
6 |
|
ax-1cn |
|
7 |
6
|
a1i |
|
8 |
|
eqidd |
|
9 |
|
fconstmpt |
|
10 |
9
|
a1i |
|
11 |
3 5 7 8 10
|
offval2 |
|
12 |
|
zsscn |
|
13 |
|
1z |
|
14 |
|
2nn0 |
|
15 |
|
plypow |
|
16 |
12 13 14 15
|
mp3an |
|
17 |
16
|
a1i |
|
18 |
|
plyconst |
|
19 |
12 13 18
|
mp2an |
|
20 |
19
|
a1i |
|
21 |
|
zaddcl |
|
22 |
21
|
adantl |
|
23 |
17 20 22
|
plyadd |
|
24 |
11 23
|
eqeltrrd |
|
25 |
24
|
mptru |
|
26 |
|
0cn |
|
27 |
|
sq0i |
|
28 |
27
|
oveq1d |
|
29 |
|
0p1e1 |
|
30 |
28 29
|
eqtrdi |
|
31 |
|
eqid |
|
32 |
|
1ex |
|
33 |
30 31 32
|
fvmpt |
|
34 |
26 33
|
ax-mp |
|
35 |
|
ax-1ne0 |
|
36 |
34 35
|
eqnetri |
|
37 |
|
ne0p |
|
38 |
26 36 37
|
mp2an |
|
39 |
|
eldifsn |
|
40 |
25 38 39
|
mpbir2an |
|
41 |
|
oveq1 |
|
42 |
|
i2 |
|
43 |
41 42
|
eqtrdi |
|
44 |
43
|
oveq1d |
|
45 |
|
neg1cn |
|
46 |
|
1pneg1e0 |
|
47 |
6 45 46
|
addcomli |
|
48 |
44 47
|
eqtrdi |
|
49 |
|
c0ex |
|
50 |
48 31 49
|
fvmpt |
|
51 |
1 50
|
ax-mp |
|
52 |
|
fveq1 |
|
53 |
52
|
eqeq1d |
|
54 |
53
|
rspcev |
|
55 |
40 51 54
|
mp2an |
|
56 |
|
elaa |
|
57 |
1 55 56
|
mpbir2an |
|