Metamath Proof Explorer


Theorem iblabs

Description: The absolute value of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses iblabs.1 φ x A B V
iblabs.2 φ x A B 𝐿 1
Assertion iblabs φ x A B 𝐿 1

Proof

Step Hyp Ref Expression
1 iblabs.1 φ x A B V
2 iblabs.2 φ x A B 𝐿 1
3 absf abs :
4 3 a1i φ abs :
5 iblmbf x A B 𝐿 1 x A B MblFn
6 2 5 syl φ x A B MblFn
7 6 1 mbfmptcl φ x A B
8 4 7 cofmpt φ abs x A B = x A B
9 7 fmpttd φ x A B : A
10 ax-resscn
11 ssid
12 cncfss cn cn
13 10 11 12 mp2an cn cn
14 abscncf abs : cn
15 13 14 sselii abs : cn
16 15 a1i φ abs : cn
17 cncombf x A B MblFn x A B : A abs : cn abs x A B MblFn
18 6 9 16 17 syl3anc φ abs x A B MblFn
19 8 18 eqeltrrd φ x A B MblFn
20 7 abscld φ x A B
21 20 rexrd φ x A B *
22 7 absge0d φ x A 0 B
23 elxrge0 B 0 +∞ B * 0 B
24 21 22 23 sylanbrc φ x A B 0 +∞
25 0e0iccpnf 0 0 +∞
26 25 a1i φ ¬ x A 0 0 +∞
27 24 26 ifclda φ if x A B 0 0 +∞
28 27 adantr φ x if x A B 0 0 +∞
29 28 fmpttd φ x if x A B 0 : 0 +∞
30 reex V
31 30 a1i φ V
32 7 recld φ x A B
33 32 recnd φ x A B
34 33 abscld φ x A B
35 33 absge0d φ x A 0 B
36 elrege0 B 0 +∞ B 0 B
37 34 35 36 sylanbrc φ x A B 0 +∞
38 0e0icopnf 0 0 +∞
39 38 a1i φ ¬ x A 0 0 +∞
40 37 39 ifclda φ if x A B 0 0 +∞
41 40 adantr φ x if x A B 0 0 +∞
42 7 imcld φ x A B
43 42 recnd φ x A B
44 43 abscld φ x A B
45 43 absge0d φ x A 0 B
46 elrege0 B 0 +∞ B 0 B
47 44 45 46 sylanbrc φ x A B 0 +∞
48 47 39 ifclda φ if x A B 0 0 +∞
49 48 adantr φ x if x A B 0 0 +∞
50 eqidd φ x if x A B 0 = x if x A B 0
51 eqidd φ x if x A B 0 = x if x A B 0
52 31 41 49 50 51 offval2 φ x if x A B 0 + f x if x A B 0 = x if x A B 0 + if x A B 0
53 iftrue x A if x A B 0 = B
54 iftrue x A if x A B 0 = B
55 53 54 oveq12d x A if x A B 0 + if x A B 0 = B + B
56 iftrue x A if x A B + B 0 = B + B
57 55 56 eqtr4d x A if x A B 0 + if x A B 0 = if x A B + B 0
58 00id 0 + 0 = 0
59 iffalse ¬ x A if x A B 0 = 0
60 iffalse ¬ x A if x A B 0 = 0
61 59 60 oveq12d ¬ x A if x A B 0 + if x A B 0 = 0 + 0
62 iffalse ¬ x A if x A B + B 0 = 0
63 58 61 62 3eqtr4a ¬ x A if x A B 0 + if x A B 0 = if x A B + B 0
64 57 63 pm2.61i if x A B 0 + if x A B 0 = if x A B + B 0
65 64 mpteq2i x if x A B 0 + if x A B 0 = x if x A B + B 0
66 52 65 eqtr2di φ x if x A B + B 0 = x if x A B 0 + f x if x A B 0
67 66 fveq2d φ 2 x if x A B + B 0 = 2 x if x A B 0 + f x if x A B 0
68 eqid x if x A B 0 = x if x A B 0
69 7 iblcn φ x A B 𝐿 1 x A B 𝐿 1 x A B 𝐿 1
70 2 69 mpbid φ x A B 𝐿 1 x A B 𝐿 1
71 70 simpld φ x A B 𝐿 1
72 1 2 68 71 32 iblabslem φ x if x A B 0 MblFn 2 x if x A B 0
73 72 simpld φ x if x A B 0 MblFn
74 41 fmpttd φ x if x A B 0 : 0 +∞
75 72 simprd φ 2 x if x A B 0
76 eqid x if x A B 0 = x if x A B 0
77 70 simprd φ x A B 𝐿 1
78 1 2 76 77 42 iblabslem φ x if x A B 0 MblFn 2 x if x A B 0
79 78 simpld φ x if x A B 0 MblFn
80 49 fmpttd φ x if x A B 0 : 0 +∞
81 78 simprd φ 2 x if x A B 0
82 73 74 75 79 80 81 itg2add φ 2 x if x A B 0 + f x if x A B 0 = 2 x if x A B 0 + 2 x if x A B 0
83 67 82 eqtrd φ 2 x if x A B + B 0 = 2 x if x A B 0 + 2 x if x A B 0
84 75 81 readdcld φ 2 x if x A B 0 + 2 x if x A B 0
85 83 84 eqeltrd φ 2 x if x A B + B 0
86 34 44 readdcld φ x A B + B
87 86 rexrd φ x A B + B *
88 34 44 35 45 addge0d φ x A 0 B + B
89 elxrge0 B + B 0 +∞ B + B * 0 B + B
90 87 88 89 sylanbrc φ x A B + B 0 +∞
91 90 26 ifclda φ if x A B + B 0 0 +∞
92 91 adantr φ x if x A B + B 0 0 +∞
93 92 fmpttd φ x if x A B + B 0 : 0 +∞
94 ax-icn i
95 mulcl i B i B
96 94 43 95 sylancr φ x A i B
97 33 96 abstrid φ x A B + i B B + i B
98 7 replimd φ x A B = B + i B
99 98 fveq2d φ x A B = B + i B
100 absmul i B i B = i B
101 94 43 100 sylancr φ x A i B = i B
102 absi i = 1
103 102 oveq1i i B = 1 B
104 44 recnd φ x A B
105 104 mulid2d φ x A 1 B = B
106 103 105 syl5eq φ x A i B = B
107 101 106 eqtr2d φ x A B = i B
108 107 oveq2d φ x A B + B = B + i B
109 97 99 108 3brtr4d φ x A B B + B
110 iftrue x A if x A B 0 = B
111 110 adantl φ x A if x A B 0 = B
112 56 adantl φ x A if x A B + B 0 = B + B
113 109 111 112 3brtr4d φ x A if x A B 0 if x A B + B 0
114 113 ex φ x A if x A B 0 if x A B + B 0
115 0le0 0 0
116 115 a1i ¬ x A 0 0
117 iffalse ¬ x A if x A B 0 = 0
118 116 117 62 3brtr4d ¬ x A if x A B 0 if x A B + B 0
119 114 118 pm2.61d1 φ if x A B 0 if x A B + B 0
120 119 ralrimivw φ x if x A B 0 if x A B + B 0
121 eqidd φ x if x A B 0 = x if x A B 0
122 eqidd φ x if x A B + B 0 = x if x A B + B 0
123 31 28 92 121 122 ofrfval2 φ x if x A B 0 f x if x A B + B 0 x if x A B 0 if x A B + B 0
124 120 123 mpbird φ x if x A B 0 f x if x A B + B 0
125 itg2le x if x A B 0 : 0 +∞ x if x A B + B 0 : 0 +∞ x if x A B 0 f x if x A B + B 0 2 x if x A B 0 2 x if x A B + B 0
126 29 93 124 125 syl3anc φ 2 x if x A B 0 2 x if x A B + B 0
127 itg2lecl x if x A B 0 : 0 +∞ 2 x if x A B + B 0 2 x if x A B 0 2 x if x A B + B 0 2 x if x A B 0
128 29 85 126 127 syl3anc φ 2 x if x A B 0
129 20 22 iblpos φ x A B 𝐿 1 x A B MblFn 2 x if x A B 0
130 19 128 129 mpbir2and φ x A B 𝐿 1