Metamath Proof Explorer


Theorem ibladd

Description: Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itgadd.1 φ x A B V
itgadd.2 φ x A B 𝐿 1
itgadd.3 φ x A C V
itgadd.4 φ x A C 𝐿 1
Assertion ibladd φ x A B + C 𝐿 1

Proof

Step Hyp Ref Expression
1 itgadd.1 φ x A B V
2 itgadd.2 φ x A B 𝐿 1
3 itgadd.3 φ x A C V
4 itgadd.4 φ x A C 𝐿 1
5 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
6 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
7 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
8 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
9 5 6 7 8 1 iblcnlem φ x A B 𝐿 1 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0
10 2 9 mpbid φ x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0
11 10 simp1d φ x A B MblFn
12 11 1 mbfdm2 φ A dom vol
13 eqidd φ x A B = x A B
14 eqidd φ x A C = x A C
15 12 1 3 13 14 offval2 φ x A B + f x A C = x A B + C
16 eqid 2 x if x A 0 C C 0 = 2 x if x A 0 C C 0
17 eqid 2 x if x A 0 C C 0 = 2 x if x A 0 C C 0
18 eqid 2 x if x A 0 C C 0 = 2 x if x A 0 C C 0
19 eqid 2 x if x A 0 C C 0 = 2 x if x A 0 C C 0
20 16 17 18 19 3 iblcnlem φ x A C 𝐿 1 x A C MblFn 2 x if x A 0 C C 0 2 x if x A 0 C C 0 2 x if x A 0 C C 0 2 x if x A 0 C C 0
21 4 20 mpbid φ x A C MblFn 2 x if x A 0 C C 0 2 x if x A 0 C C 0 2 x if x A 0 C C 0 2 x if x A 0 C C 0
22 21 simp1d φ x A C MblFn
23 11 22 mbfadd φ x A B + f x A C MblFn
24 15 23 eqeltrrd φ x A B + C MblFn
25 11 1 mbfmptcl φ x A B
26 25 recld φ x A B
27 22 3 mbfmptcl φ x A C
28 27 recld φ x A C
29 25 27 readdd φ x A B + C = B + C
30 25 ismbfcn2 φ x A B MblFn x A B MblFn x A B MblFn
31 11 30 mpbid φ x A B MblFn x A B MblFn
32 31 simpld φ x A B MblFn
33 27 ismbfcn2 φ x A C MblFn x A C MblFn x A C MblFn
34 22 33 mpbid φ x A C MblFn x A C MblFn
35 34 simpld φ x A C MblFn
36 10 simp2d φ 2 x if x A 0 B B 0 2 x if x A 0 B B 0
37 36 simpld φ 2 x if x A 0 B B 0
38 21 simp2d φ 2 x if x A 0 C C 0 2 x if x A 0 C C 0
39 38 simpld φ 2 x if x A 0 C C 0
40 26 28 29 32 35 37 39 ibladdlem φ 2 x if x A 0 B + C B + C 0
41 26 renegcld φ x A B
42 28 renegcld φ x A C
43 29 negeqd φ x A B + C = B + C
44 26 recnd φ x A B
45 28 recnd φ x A C
46 44 45 negdid φ x A B + C = - B + C
47 43 46 eqtrd φ x A B + C = - B + C
48 26 32 mbfneg φ x A B MblFn
49 28 35 mbfneg φ x A C MblFn
50 36 simprd φ 2 x if x A 0 B B 0
51 38 simprd φ 2 x if x A 0 C C 0
52 41 42 47 48 49 50 51 ibladdlem φ 2 x if x A 0 B + C B + C 0
53 40 52 jca φ 2 x if x A 0 B + C B + C 0 2 x if x A 0 B + C B + C 0
54 25 imcld φ x A B
55 27 imcld φ x A C
56 25 27 imaddd φ x A B + C = B + C
57 31 simprd φ x A B MblFn
58 34 simprd φ x A C MblFn
59 10 simp3d φ 2 x if x A 0 B B 0 2 x if x A 0 B B 0
60 59 simpld φ 2 x if x A 0 B B 0
61 21 simp3d φ 2 x if x A 0 C C 0 2 x if x A 0 C C 0
62 61 simpld φ 2 x if x A 0 C C 0
63 54 55 56 57 58 60 62 ibladdlem φ 2 x if x A 0 B + C B + C 0
64 54 renegcld φ x A B
65 55 renegcld φ x A C
66 56 negeqd φ x A B + C = B + C
67 54 recnd φ x A B
68 55 recnd φ x A C
69 67 68 negdid φ x A B + C = - B + C
70 66 69 eqtrd φ x A B + C = - B + C
71 54 57 mbfneg φ x A B MblFn
72 55 58 mbfneg φ x A C MblFn
73 59 simprd φ 2 x if x A 0 B B 0
74 61 simprd φ 2 x if x A 0 C C 0
75 64 65 70 71 72 73 74 ibladdlem φ 2 x if x A 0 B + C B + C 0
76 63 75 jca φ 2 x if x A 0 B + C B + C 0 2 x if x A 0 B + C B + C 0
77 eqid 2 x if x A 0 B + C B + C 0 = 2 x if x A 0 B + C B + C 0
78 eqid 2 x if x A 0 B + C B + C 0 = 2 x if x A 0 B + C B + C 0
79 eqid 2 x if x A 0 B + C B + C 0 = 2 x if x A 0 B + C B + C 0
80 eqid 2 x if x A 0 B + C B + C 0 = 2 x if x A 0 B + C B + C 0
81 ovexd φ x A B + C V
82 77 78 79 80 81 iblcnlem φ x A B + C 𝐿 1 x A B + C MblFn 2 x if x A 0 B + C B + C 0 2 x if x A 0 B + C B + C 0 2 x if x A 0 B + C B + C 0 2 x if x A 0 B + C B + C 0
83 24 53 76 82 mpbir3and φ x A B + C 𝐿 1