Step |
Hyp |
Ref |
Expression |
1 |
|
itgadd.1 |
|
2 |
|
itgadd.2 |
|
3 |
|
itgadd.3 |
|
4 |
|
itgadd.4 |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
5 6 7 8 1
|
iblcnlem |
|
10 |
2 9
|
mpbid |
|
11 |
10
|
simp1d |
|
12 |
11 1
|
mbfdm2 |
|
13 |
|
eqidd |
|
14 |
|
eqidd |
|
15 |
12 1 3 13 14
|
offval2 |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
16 17 18 19 3
|
iblcnlem |
|
21 |
4 20
|
mpbid |
|
22 |
21
|
simp1d |
|
23 |
11 22
|
mbfadd |
|
24 |
15 23
|
eqeltrrd |
|
25 |
11 1
|
mbfmptcl |
|
26 |
25
|
recld |
|
27 |
22 3
|
mbfmptcl |
|
28 |
27
|
recld |
|
29 |
25 27
|
readdd |
|
30 |
25
|
ismbfcn2 |
|
31 |
11 30
|
mpbid |
|
32 |
31
|
simpld |
|
33 |
27
|
ismbfcn2 |
|
34 |
22 33
|
mpbid |
|
35 |
34
|
simpld |
|
36 |
10
|
simp2d |
|
37 |
36
|
simpld |
|
38 |
21
|
simp2d |
|
39 |
38
|
simpld |
|
40 |
26 28 29 32 35 37 39
|
ibladdlem |
|
41 |
26
|
renegcld |
|
42 |
28
|
renegcld |
|
43 |
29
|
negeqd |
|
44 |
26
|
recnd |
|
45 |
28
|
recnd |
|
46 |
44 45
|
negdid |
|
47 |
43 46
|
eqtrd |
|
48 |
26 32
|
mbfneg |
|
49 |
28 35
|
mbfneg |
|
50 |
36
|
simprd |
|
51 |
38
|
simprd |
|
52 |
41 42 47 48 49 50 51
|
ibladdlem |
|
53 |
40 52
|
jca |
|
54 |
25
|
imcld |
|
55 |
27
|
imcld |
|
56 |
25 27
|
imaddd |
|
57 |
31
|
simprd |
|
58 |
34
|
simprd |
|
59 |
10
|
simp3d |
|
60 |
59
|
simpld |
|
61 |
21
|
simp3d |
|
62 |
61
|
simpld |
|
63 |
54 55 56 57 58 60 62
|
ibladdlem |
|
64 |
54
|
renegcld |
|
65 |
55
|
renegcld |
|
66 |
56
|
negeqd |
|
67 |
54
|
recnd |
|
68 |
55
|
recnd |
|
69 |
67 68
|
negdid |
|
70 |
66 69
|
eqtrd |
|
71 |
54 57
|
mbfneg |
|
72 |
55 58
|
mbfneg |
|
73 |
59
|
simprd |
|
74 |
61
|
simprd |
|
75 |
64 65 70 71 72 73 74
|
ibladdlem |
|
76 |
63 75
|
jca |
|
77 |
|
eqid |
|
78 |
|
eqid |
|
79 |
|
eqid |
|
80 |
|
eqid |
|
81 |
|
ovexd |
|
82 |
77 78 79 80 81
|
iblcnlem |
|
83 |
24 53 76 82
|
mpbir3and |
|