Metamath Proof Explorer


Theorem ibladdlem

Description: Lemma for ibladd . (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses ibladd.1 φ x A B
ibladd.2 φ x A C
ibladd.3 φ x A D = B + C
ibladd.4 φ x A B MblFn
ibladd.5 φ x A C MblFn
ibladd.6 φ 2 x if x A 0 B B 0
ibladd.7 φ 2 x if x A 0 C C 0
Assertion ibladdlem φ 2 x if x A 0 D D 0

Proof

Step Hyp Ref Expression
1 ibladd.1 φ x A B
2 ibladd.2 φ x A C
3 ibladd.3 φ x A D = B + C
4 ibladd.4 φ x A B MblFn
5 ibladd.5 φ x A C MblFn
6 ibladd.6 φ 2 x if x A 0 B B 0
7 ibladd.7 φ 2 x if x A 0 C C 0
8 ifan if x A 0 D D 0 = if x A if 0 D D 0 0
9 1 2 readdcld φ x A B + C
10 3 9 eqeltrd φ x A D
11 0re 0
12 ifcl D 0 if 0 D D 0
13 10 11 12 sylancl φ x A if 0 D D 0
14 13 rexrd φ x A if 0 D D 0 *
15 max1 0 D 0 if 0 D D 0
16 11 10 15 sylancr φ x A 0 if 0 D D 0
17 elxrge0 if 0 D D 0 0 +∞ if 0 D D 0 * 0 if 0 D D 0
18 14 16 17 sylanbrc φ x A if 0 D D 0 0 +∞
19 0e0iccpnf 0 0 +∞
20 19 a1i φ ¬ x A 0 0 +∞
21 18 20 ifclda φ if x A if 0 D D 0 0 0 +∞
22 21 adantr φ x if x A if 0 D D 0 0 0 +∞
23 8 22 eqeltrid φ x if x A 0 D D 0 0 +∞
24 23 fmpttd φ x if x A 0 D D 0 : 0 +∞
25 reex V
26 25 a1i φ V
27 ifan if x A 0 B B 0 = if x A if 0 B B 0 0
28 ifcl B 0 if 0 B B 0
29 1 11 28 sylancl φ x A if 0 B B 0
30 11 a1i φ ¬ x A 0
31 29 30 ifclda φ if x A if 0 B B 0 0
32 27 31 eqeltrid φ if x A 0 B B 0
33 32 adantr φ x if x A 0 B B 0
34 ifan if x A 0 C C 0 = if x A if 0 C C 0 0
35 ifcl C 0 if 0 C C 0
36 2 11 35 sylancl φ x A if 0 C C 0
37 36 30 ifclda φ if x A if 0 C C 0 0
38 34 37 eqeltrid φ if x A 0 C C 0
39 38 adantr φ x if x A 0 C C 0
40 eqidd φ x if x A 0 B B 0 = x if x A 0 B B 0
41 eqidd φ x if x A 0 C C 0 = x if x A 0 C C 0
42 26 33 39 40 41 offval2 φ x if x A 0 B B 0 + f x if x A 0 C C 0 = x if x A 0 B B 0 + if x A 0 C C 0
43 iftrue x A if x A if 0 B B 0 + if 0 C C 0 0 = if 0 B B 0 + if 0 C C 0
44 ibar x A 0 B x A 0 B
45 44 ifbid x A if 0 B B 0 = if x A 0 B B 0
46 ibar x A 0 C x A 0 C
47 46 ifbid x A if 0 C C 0 = if x A 0 C C 0
48 45 47 oveq12d x A if 0 B B 0 + if 0 C C 0 = if x A 0 B B 0 + if x A 0 C C 0
49 43 48 eqtr2d x A if x A 0 B B 0 + if x A 0 C C 0 = if x A if 0 B B 0 + if 0 C C 0 0
50 00id 0 + 0 = 0
51 simpl x A 0 B x A
52 51 con3i ¬ x A ¬ x A 0 B
53 52 iffalsed ¬ x A if x A 0 B B 0 = 0
54 simpl x A 0 C x A
55 54 con3i ¬ x A ¬ x A 0 C
56 55 iffalsed ¬ x A if x A 0 C C 0 = 0
57 53 56 oveq12d ¬ x A if x A 0 B B 0 + if x A 0 C C 0 = 0 + 0
58 iffalse ¬ x A if x A if 0 B B 0 + if 0 C C 0 0 = 0
59 50 57 58 3eqtr4a ¬ x A if x A 0 B B 0 + if x A 0 C C 0 = if x A if 0 B B 0 + if 0 C C 0 0
60 49 59 pm2.61i if x A 0 B B 0 + if x A 0 C C 0 = if x A if 0 B B 0 + if 0 C C 0 0
61 60 mpteq2i x if x A 0 B B 0 + if x A 0 C C 0 = x if x A if 0 B B 0 + if 0 C C 0 0
62 42 61 eqtrdi φ x if x A 0 B B 0 + f x if x A 0 C C 0 = x if x A if 0 B B 0 + if 0 C C 0 0
63 62 fveq2d φ 2 x if x A 0 B B 0 + f x if x A 0 C C 0 = 2 x if x A if 0 B B 0 + if 0 C C 0 0
64 4 1 mbfdm2 φ A dom vol
65 mblss A dom vol A
66 64 65 syl φ A
67 rembl dom vol
68 67 a1i φ dom vol
69 32 adantr φ x A if x A 0 B B 0
70 eldifn x A ¬ x A
71 70 adantl φ x A ¬ x A
72 71 intnanrd φ x A ¬ x A 0 B
73 72 iffalsed φ x A if x A 0 B B 0 = 0
74 45 mpteq2ia x A if 0 B B 0 = x A if x A 0 B B 0
75 1 4 mbfpos φ x A if 0 B B 0 MblFn
76 74 75 eqeltrrid φ x A if x A 0 B B 0 MblFn
77 66 68 69 73 76 mbfss φ x if x A 0 B B 0 MblFn
78 max1 0 B 0 if 0 B B 0
79 11 1 78 sylancr φ x A 0 if 0 B B 0
80 elrege0 if 0 B B 0 0 +∞ if 0 B B 0 0 if 0 B B 0
81 29 79 80 sylanbrc φ x A if 0 B B 0 0 +∞
82 0e0icopnf 0 0 +∞
83 82 a1i φ ¬ x A 0 0 +∞
84 81 83 ifclda φ if x A if 0 B B 0 0 0 +∞
85 27 84 eqeltrid φ if x A 0 B B 0 0 +∞
86 85 adantr φ x if x A 0 B B 0 0 +∞
87 86 fmpttd φ x if x A 0 B B 0 : 0 +∞
88 38 adantr φ x A if x A 0 C C 0
89 71 56 syl φ x A if x A 0 C C 0 = 0
90 47 mpteq2ia x A if 0 C C 0 = x A if x A 0 C C 0
91 2 5 mbfpos φ x A if 0 C C 0 MblFn
92 90 91 eqeltrrid φ x A if x A 0 C C 0 MblFn
93 66 68 88 89 92 mbfss φ x if x A 0 C C 0 MblFn
94 max1 0 C 0 if 0 C C 0
95 11 2 94 sylancr φ x A 0 if 0 C C 0
96 elrege0 if 0 C C 0 0 +∞ if 0 C C 0 0 if 0 C C 0
97 36 95 96 sylanbrc φ x A if 0 C C 0 0 +∞
98 97 83 ifclda φ if x A if 0 C C 0 0 0 +∞
99 34 98 eqeltrid φ if x A 0 C C 0 0 +∞
100 99 adantr φ x if x A 0 C C 0 0 +∞
101 100 fmpttd φ x if x A 0 C C 0 : 0 +∞
102 77 87 6 93 101 7 itg2add φ 2 x if x A 0 B B 0 + f x if x A 0 C C 0 = 2 x if x A 0 B B 0 + 2 x if x A 0 C C 0
103 63 102 eqtr3d φ 2 x if x A if 0 B B 0 + if 0 C C 0 0 = 2 x if x A 0 B B 0 + 2 x if x A 0 C C 0
104 6 7 readdcld φ 2 x if x A 0 B B 0 + 2 x if x A 0 C C 0
105 103 104 eqeltrd φ 2 x if x A if 0 B B 0 + if 0 C C 0 0
106 29 36 readdcld φ x A if 0 B B 0 + if 0 C C 0
107 106 rexrd φ x A if 0 B B 0 + if 0 C C 0 *
108 29 36 79 95 addge0d φ x A 0 if 0 B B 0 + if 0 C C 0
109 elxrge0 if 0 B B 0 + if 0 C C 0 0 +∞ if 0 B B 0 + if 0 C C 0 * 0 if 0 B B 0 + if 0 C C 0
110 107 108 109 sylanbrc φ x A if 0 B B 0 + if 0 C C 0 0 +∞
111 110 20 ifclda φ if x A if 0 B B 0 + if 0 C C 0 0 0 +∞
112 111 adantr φ x if x A if 0 B B 0 + if 0 C C 0 0 0 +∞
113 112 fmpttd φ x if x A if 0 B B 0 + if 0 C C 0 0 : 0 +∞
114 max2 0 B B if 0 B B 0
115 11 1 114 sylancr φ x A B if 0 B B 0
116 max2 0 C C if 0 C C 0
117 11 2 116 sylancr φ x A C if 0 C C 0
118 1 2 29 36 115 117 le2addd φ x A B + C if 0 B B 0 + if 0 C C 0
119 3 118 eqbrtrd φ x A D if 0 B B 0 + if 0 C C 0
120 breq1 D = if 0 D D 0 D if 0 B B 0 + if 0 C C 0 if 0 D D 0 if 0 B B 0 + if 0 C C 0
121 breq1 0 = if 0 D D 0 0 if 0 B B 0 + if 0 C C 0 if 0 D D 0 if 0 B B 0 + if 0 C C 0
122 120 121 ifboth D if 0 B B 0 + if 0 C C 0 0 if 0 B B 0 + if 0 C C 0 if 0 D D 0 if 0 B B 0 + if 0 C C 0
123 119 108 122 syl2anc φ x A if 0 D D 0 if 0 B B 0 + if 0 C C 0
124 iftrue x A if x A if 0 D D 0 0 = if 0 D D 0
125 124 adantl φ x A if x A if 0 D D 0 0 = if 0 D D 0
126 43 adantl φ x A if x A if 0 B B 0 + if 0 C C 0 0 = if 0 B B 0 + if 0 C C 0
127 123 125 126 3brtr4d φ x A if x A if 0 D D 0 0 if x A if 0 B B 0 + if 0 C C 0 0
128 127 ex φ x A if x A if 0 D D 0 0 if x A if 0 B B 0 + if 0 C C 0 0
129 0le0 0 0
130 129 a1i ¬ x A 0 0
131 iffalse ¬ x A if x A if 0 D D 0 0 = 0
132 130 131 58 3brtr4d ¬ x A if x A if 0 D D 0 0 if x A if 0 B B 0 + if 0 C C 0 0
133 128 132 pm2.61d1 φ if x A if 0 D D 0 0 if x A if 0 B B 0 + if 0 C C 0 0
134 8 133 eqbrtrid φ if x A 0 D D 0 if x A if 0 B B 0 + if 0 C C 0 0
135 134 ralrimivw φ x if x A 0 D D 0 if x A if 0 B B 0 + if 0 C C 0 0
136 eqidd φ x if x A 0 D D 0 = x if x A 0 D D 0
137 eqidd φ x if x A if 0 B B 0 + if 0 C C 0 0 = x if x A if 0 B B 0 + if 0 C C 0 0
138 26 23 112 136 137 ofrfval2 φ x if x A 0 D D 0 f x if x A if 0 B B 0 + if 0 C C 0 0 x if x A 0 D D 0 if x A if 0 B B 0 + if 0 C C 0 0
139 135 138 mpbird φ x if x A 0 D D 0 f x if x A if 0 B B 0 + if 0 C C 0 0
140 itg2le x if x A 0 D D 0 : 0 +∞ x if x A if 0 B B 0 + if 0 C C 0 0 : 0 +∞ x if x A 0 D D 0 f x if x A if 0 B B 0 + if 0 C C 0 0 2 x if x A 0 D D 0 2 x if x A if 0 B B 0 + if 0 C C 0 0
141 24 113 139 140 syl3anc φ 2 x if x A 0 D D 0 2 x if x A if 0 B B 0 + if 0 C C 0 0
142 itg2lecl x if x A 0 D D 0 : 0 +∞ 2 x if x A if 0 B B 0 + if 0 C C 0 0 2 x if x A 0 D D 0 2 x if x A if 0 B B 0 + if 0 C C 0 0 2 x if x A 0 D D 0
143 24 105 141 142 syl3anc φ 2 x if x A 0 D D 0