Metamath Proof Explorer


Theorem iblcn

Description: Integrability of a complex function. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypothesis iblcn.1 φ x A B
Assertion iblcn φ x A B 𝐿 1 x A B 𝐿 1 x A B 𝐿 1

Proof

Step Hyp Ref Expression
1 iblcn.1 φ x A B
2 1 ismbfcn2 φ x A B MblFn x A B MblFn x A B MblFn
3 2 anbi1d φ x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 x A B MblFn x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0
4 3anass x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0
5 an4 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 x A B MblFn x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0
6 3 4 5 3bitr4g φ x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
7 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
8 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
9 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
10 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
11 7 8 9 10 1 iblcnlem1 φ x A B 𝐿 1 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0
12 1 recld φ x A B
13 12 iblrelem φ x A B 𝐿 1 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
14 3anass x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
15 13 14 bitrdi φ x A B 𝐿 1 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
16 1 imcld φ x A B
17 16 iblrelem φ x A B 𝐿 1 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
18 3anass x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
19 17 18 bitrdi φ x A B 𝐿 1 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
20 15 19 anbi12d φ x A B 𝐿 1 x A B 𝐿 1 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
21 6 11 20 3bitr4d φ x A B 𝐿 1 x A B 𝐿 1 x A B 𝐿 1