Metamath Proof Explorer


Theorem iblcnlem

Description: Expand out the universal quantifier in isibl2 . (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypotheses itgcnlem.r R = 2 x if x A 0 B B 0
itgcnlem.s S = 2 x if x A 0 B B 0
itgcnlem.t T = 2 x if x A 0 B B 0
itgcnlem.u U = 2 x if x A 0 B B 0
itgcnlem.v φ x A B V
Assertion iblcnlem φ x A B 𝐿 1 x A B MblFn R S T U

Proof

Step Hyp Ref Expression
1 itgcnlem.r R = 2 x if x A 0 B B 0
2 itgcnlem.s S = 2 x if x A 0 B B 0
3 itgcnlem.t T = 2 x if x A 0 B B 0
4 itgcnlem.u U = 2 x if x A 0 B B 0
5 itgcnlem.v φ x A B V
6 iblmbf x A B 𝐿 1 x A B MblFn
7 6 a1i φ x A B 𝐿 1 x A B MblFn
8 simp1 x A B MblFn R S T U x A B MblFn
9 8 a1i φ x A B MblFn R S T U x A B MblFn
10 eqid 2 x if x A 0 if B B 0 if B B 0 0 = 2 x if x A 0 if B B 0 if B B 0 0
11 eqid 2 x if x A 0 if B B 0 if B B 0 0 = 2 x if x A 0 if B B 0 if B B 0 0
12 eqid 2 x if x A 0 if B B 0 if B B 0 0 = 2 x if x A 0 if B B 0 if B B 0 0
13 eqid 2 x if x A 0 if B B 0 if B B 0 0 = 2 x if x A 0 if B B 0 if B B 0 0
14 0cn 0
15 14 elimel if B B 0
16 15 a1i φ x A if B B 0
17 10 11 12 13 16 iblcnlem1 φ x A if B B 0 𝐿 1 x A if B B 0 MblFn 2 x if x A 0 if B B 0 if B B 0 0 2 x if x A 0 if B B 0 if B B 0 0 2 x if x A 0 if B B 0 if B B 0 0 2 x if x A 0 if B B 0 if B B 0 0
18 17 adantr φ x A B MblFn x A if B B 0 𝐿 1 x A if B B 0 MblFn 2 x if x A 0 if B B 0 if B B 0 0 2 x if x A 0 if B B 0 if B B 0 0 2 x if x A 0 if B B 0 if B B 0 0 2 x if x A 0 if B B 0 if B B 0 0
19 eqid A = A
20 mbff x A B MblFn x A B : dom x A B
21 eqid x A B = x A B
22 21 5 dmmptd φ dom x A B = A
23 22 feq2d φ x A B : dom x A B x A B : A
24 23 biimpa φ x A B : dom x A B x A B : A
25 20 24 sylan2 φ x A B MblFn x A B : A
26 21 fmpt x A B x A B : A
27 25 26 sylibr φ x A B MblFn x A B
28 iftrue B if B B 0 = B
29 28 ralimi x A B x A if B B 0 = B
30 27 29 syl φ x A B MblFn x A if B B 0 = B
31 mpteq12 A = A x A if B B 0 = B x A if B B 0 = x A B
32 19 30 31 sylancr φ x A B MblFn x A if B B 0 = x A B
33 32 eleq1d φ x A B MblFn x A if B B 0 𝐿 1 x A B 𝐿 1
34 32 eleq1d φ x A B MblFn x A if B B 0 MblFn x A B MblFn
35 eqid =
36 28 imim2i x A B x A if B B 0 = B
37 36 imp x A B x A if B B 0 = B
38 37 fveq2d x A B x A if B B 0 = B
39 38 ibllem x A B if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
40 39 a1d x A B x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
41 40 ralimi2 x A B x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
42 27 41 syl φ x A B MblFn x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
43 mpteq12 = x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0 x if x A 0 if B B 0 if B B 0 0 = x if x A 0 B B 0
44 35 42 43 sylancr φ x A B MblFn x if x A 0 if B B 0 if B B 0 0 = x if x A 0 B B 0
45 44 fveq2d φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 = 2 x if x A 0 B B 0
46 45 1 eqtr4di φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 = R
47 46 eleq1d φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 R
48 38 negeqd x A B x A if B B 0 = B
49 48 ibllem x A B if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
50 49 a1d x A B x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
51 50 ralimi2 x A B x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
52 27 51 syl φ x A B MblFn x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
53 mpteq12 = x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0 x if x A 0 if B B 0 if B B 0 0 = x if x A 0 B B 0
54 35 52 53 sylancr φ x A B MblFn x if x A 0 if B B 0 if B B 0 0 = x if x A 0 B B 0
55 54 fveq2d φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 = 2 x if x A 0 B B 0
56 55 2 eqtr4di φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 = S
57 56 eleq1d φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 S
58 47 57 anbi12d φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 2 x if x A 0 if B B 0 if B B 0 0 R S
59 37 fveq2d x A B x A if B B 0 = B
60 59 ibllem x A B if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
61 60 a1d x A B x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
62 61 ralimi2 x A B x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
63 27 62 syl φ x A B MblFn x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
64 mpteq12 = x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0 x if x A 0 if B B 0 if B B 0 0 = x if x A 0 B B 0
65 35 63 64 sylancr φ x A B MblFn x if x A 0 if B B 0 if B B 0 0 = x if x A 0 B B 0
66 65 fveq2d φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 = 2 x if x A 0 B B 0
67 66 3 eqtr4di φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 = T
68 67 eleq1d φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 T
69 59 negeqd x A B x A if B B 0 = B
70 69 ibllem x A B if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
71 70 a1d x A B x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
72 71 ralimi2 x A B x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
73 27 72 syl φ x A B MblFn x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0
74 mpteq12 = x if x A 0 if B B 0 if B B 0 0 = if x A 0 B B 0 x if x A 0 if B B 0 if B B 0 0 = x if x A 0 B B 0
75 35 73 74 sylancr φ x A B MblFn x if x A 0 if B B 0 if B B 0 0 = x if x A 0 B B 0
76 75 fveq2d φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 = 2 x if x A 0 B B 0
77 76 4 eqtr4di φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 = U
78 77 eleq1d φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 U
79 68 78 anbi12d φ x A B MblFn 2 x if x A 0 if B B 0 if B B 0 0 2 x if x A 0 if B B 0 if B B 0 0 T U
80 34 58 79 3anbi123d φ x A B MblFn x A if B B 0 MblFn 2 x if x A 0 if B B 0 if B B 0 0 2 x if x A 0 if B B 0 if B B 0 0 2 x if x A 0 if B B 0 if B B 0 0 2 x if x A 0 if B B 0 if B B 0 0 x A B MblFn R S T U
81 18 33 80 3bitr3d φ x A B MblFn x A B 𝐿 1 x A B MblFn R S T U
82 81 ex φ x A B MblFn x A B 𝐿 1 x A B MblFn R S T U
83 7 9 82 pm5.21ndd φ x A B 𝐿 1 x A B MblFn R S T U