Step |
Hyp |
Ref |
Expression |
1 |
|
itgcnlem.r |
|
2 |
|
itgcnlem.s |
|
3 |
|
itgcnlem.t |
|
4 |
|
itgcnlem.u |
|
5 |
|
itgcnlem.v |
|
6 |
|
iblmbf |
|
7 |
6
|
a1i |
|
8 |
|
simp1 |
|
9 |
8
|
a1i |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
0cn |
|
15 |
14
|
elimel |
|
16 |
15
|
a1i |
|
17 |
10 11 12 13 16
|
iblcnlem1 |
|
18 |
17
|
adantr |
|
19 |
|
eqid |
|
20 |
|
mbff |
|
21 |
|
eqid |
|
22 |
21 5
|
dmmptd |
|
23 |
22
|
feq2d |
|
24 |
23
|
biimpa |
|
25 |
20 24
|
sylan2 |
|
26 |
21
|
fmpt |
|
27 |
25 26
|
sylibr |
|
28 |
|
iftrue |
|
29 |
28
|
ralimi |
|
30 |
27 29
|
syl |
|
31 |
|
mpteq12 |
|
32 |
19 30 31
|
sylancr |
|
33 |
32
|
eleq1d |
|
34 |
32
|
eleq1d |
|
35 |
|
eqid |
|
36 |
28
|
imim2i |
|
37 |
36
|
imp |
|
38 |
37
|
fveq2d |
|
39 |
38
|
ibllem |
|
40 |
39
|
a1d |
|
41 |
40
|
ralimi2 |
|
42 |
27 41
|
syl |
|
43 |
|
mpteq12 |
|
44 |
35 42 43
|
sylancr |
|
45 |
44
|
fveq2d |
|
46 |
45 1
|
eqtr4di |
|
47 |
46
|
eleq1d |
|
48 |
38
|
negeqd |
|
49 |
48
|
ibllem |
|
50 |
49
|
a1d |
|
51 |
50
|
ralimi2 |
|
52 |
27 51
|
syl |
|
53 |
|
mpteq12 |
|
54 |
35 52 53
|
sylancr |
|
55 |
54
|
fveq2d |
|
56 |
55 2
|
eqtr4di |
|
57 |
56
|
eleq1d |
|
58 |
47 57
|
anbi12d |
|
59 |
37
|
fveq2d |
|
60 |
59
|
ibllem |
|
61 |
60
|
a1d |
|
62 |
61
|
ralimi2 |
|
63 |
27 62
|
syl |
|
64 |
|
mpteq12 |
|
65 |
35 63 64
|
sylancr |
|
66 |
65
|
fveq2d |
|
67 |
66 3
|
eqtr4di |
|
68 |
67
|
eleq1d |
|
69 |
59
|
negeqd |
|
70 |
69
|
ibllem |
|
71 |
70
|
a1d |
|
72 |
71
|
ralimi2 |
|
73 |
27 72
|
syl |
|
74 |
|
mpteq12 |
|
75 |
35 73 74
|
sylancr |
|
76 |
75
|
fveq2d |
|
77 |
76 4
|
eqtr4di |
|
78 |
77
|
eleq1d |
|
79 |
68 78
|
anbi12d |
|
80 |
34 58 79
|
3anbi123d |
|
81 |
18 33 80
|
3bitr3d |
|
82 |
81
|
ex |
|
83 |
7 9 82
|
pm5.21ndd |
|