| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fconstmpt |  | 
						
							| 2 |  | mbfconst |  | 
						
							| 3 | 2 | 3adant2 |  | 
						
							| 4 | 1 3 | eqeltrrid |  | 
						
							| 5 |  | ifan |  | 
						
							| 6 | 5 | mpteq2i |  | 
						
							| 7 | 6 | fveq2i |  | 
						
							| 8 |  | simpl1 |  | 
						
							| 9 |  | simpl2 |  | 
						
							| 10 |  | simpl3 |  | 
						
							| 11 |  | ax-icn |  | 
						
							| 12 |  | ine0 |  | 
						
							| 13 |  | elfzelz |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 |  | expclz |  | 
						
							| 16 | 11 12 14 15 | mp3an12i |  | 
						
							| 17 |  | expne0i |  | 
						
							| 18 | 11 12 14 17 | mp3an12i |  | 
						
							| 19 | 10 16 18 | divcld |  | 
						
							| 20 | 19 | recld |  | 
						
							| 21 |  | 0re |  | 
						
							| 22 |  | ifcl |  | 
						
							| 23 | 20 21 22 | sylancl |  | 
						
							| 24 |  | max1 |  | 
						
							| 25 | 21 20 24 | sylancr |  | 
						
							| 26 |  | elrege0 |  | 
						
							| 27 | 23 25 26 | sylanbrc |  | 
						
							| 28 |  | itg2const |  | 
						
							| 29 | 8 9 27 28 | syl3anc |  | 
						
							| 30 | 7 29 | eqtrid |  | 
						
							| 31 | 23 9 | remulcld |  | 
						
							| 32 | 30 31 | eqeltrd |  | 
						
							| 33 | 32 | ralrimiva |  | 
						
							| 34 |  | eqidd |  | 
						
							| 35 |  | eqidd |  | 
						
							| 36 |  | simpl3 |  | 
						
							| 37 | 34 35 36 | isibl2 |  | 
						
							| 38 | 4 33 37 | mpbir2and |  | 
						
							| 39 | 1 38 | eqeltrid |  |