Metamath Proof Explorer


Theorem iblconst

Description: A constant function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Assertion iblconst A dom vol vol A B A × B 𝐿 1

Proof

Step Hyp Ref Expression
1 fconstmpt A × B = x A B
2 mbfconst A dom vol B A × B MblFn
3 2 3adant2 A dom vol vol A B A × B MblFn
4 1 3 eqeltrrid A dom vol vol A B x A B MblFn
5 ifan if x A 0 B i k B i k 0 = if x A if 0 B i k B i k 0 0
6 5 mpteq2i x if x A 0 B i k B i k 0 = x if x A if 0 B i k B i k 0 0
7 6 fveq2i 2 x if x A 0 B i k B i k 0 = 2 x if x A if 0 B i k B i k 0 0
8 simpl1 A dom vol vol A B k 0 3 A dom vol
9 simpl2 A dom vol vol A B k 0 3 vol A
10 simpl3 A dom vol vol A B k 0 3 B
11 ax-icn i
12 ine0 i 0
13 elfzelz k 0 3 k
14 13 adantl A dom vol vol A B k 0 3 k
15 expclz i i 0 k i k
16 11 12 14 15 mp3an12i A dom vol vol A B k 0 3 i k
17 expne0i i i 0 k i k 0
18 11 12 14 17 mp3an12i A dom vol vol A B k 0 3 i k 0
19 10 16 18 divcld A dom vol vol A B k 0 3 B i k
20 19 recld A dom vol vol A B k 0 3 B i k
21 0re 0
22 ifcl B i k 0 if 0 B i k B i k 0
23 20 21 22 sylancl A dom vol vol A B k 0 3 if 0 B i k B i k 0
24 max1 0 B i k 0 if 0 B i k B i k 0
25 21 20 24 sylancr A dom vol vol A B k 0 3 0 if 0 B i k B i k 0
26 elrege0 if 0 B i k B i k 0 0 +∞ if 0 B i k B i k 0 0 if 0 B i k B i k 0
27 23 25 26 sylanbrc A dom vol vol A B k 0 3 if 0 B i k B i k 0 0 +∞
28 itg2const A dom vol vol A if 0 B i k B i k 0 0 +∞ 2 x if x A if 0 B i k B i k 0 0 = if 0 B i k B i k 0 vol A
29 8 9 27 28 syl3anc A dom vol vol A B k 0 3 2 x if x A if 0 B i k B i k 0 0 = if 0 B i k B i k 0 vol A
30 7 29 syl5eq A dom vol vol A B k 0 3 2 x if x A 0 B i k B i k 0 = if 0 B i k B i k 0 vol A
31 23 9 remulcld A dom vol vol A B k 0 3 if 0 B i k B i k 0 vol A
32 30 31 eqeltrd A dom vol vol A B k 0 3 2 x if x A 0 B i k B i k 0
33 32 ralrimiva A dom vol vol A B k 0 3 2 x if x A 0 B i k B i k 0
34 eqidd A dom vol vol A B x if x A 0 B i k B i k 0 = x if x A 0 B i k B i k 0
35 eqidd A dom vol vol A B x A B i k = B i k
36 simpl3 A dom vol vol A B x A B
37 34 35 36 isibl2 A dom vol vol A B x A B 𝐿 1 x A B MblFn k 0 3 2 x if x A 0 B i k B i k 0
38 4 33 37 mpbir2and A dom vol vol A B x A B 𝐿 1
39 1 38 eqeltrid A dom vol vol A B A × B 𝐿 1