Metamath Proof Explorer


Theorem iblconstmpt

Description: A constant function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iblconstmpt A dom vol vol A B x A B 𝐿 1

Proof

Step Hyp Ref Expression
1 fconstmpt A × B = x A B
2 iblconst A dom vol vol A B A × B 𝐿 1
3 1 2 eqeltrrid A dom vol vol A B x A B 𝐿 1