Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Integrals
iblconstmpt
Next ⟩
itgeq1d
Metamath Proof Explorer
Ascii
Unicode
Theorem
iblconstmpt
Description:
A constant function is integrable.
(Contributed by
Glauco Siliprandi
, 11-Dec-2019)
Ref
Expression
Assertion
iblconstmpt
⊢
A
∈
dom
⁡
vol
∧
vol
⁡
A
∈
ℝ
∧
B
∈
ℂ
→
x
∈
A
⟼
B
∈
𝐿
1
Proof
Step
Hyp
Ref
Expression
1
fconstmpt
⊢
A
×
B
=
x
∈
A
⟼
B
2
iblconst
⊢
A
∈
dom
⁡
vol
∧
vol
⁡
A
∈
ℝ
∧
B
∈
ℂ
→
A
×
B
∈
𝐿
1
3
1
2
eqeltrrid
⊢
A
∈
dom
⁡
vol
∧
vol
⁡
A
∈
ℝ
∧
B
∈
ℂ
→
x
∈
A
⟼
B
∈
𝐿
1