Metamath Proof Explorer


Theorem iblempty

Description: The empty function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iblempty 𝐿 1

Proof

Step Hyp Ref Expression
1 mbf0 MblFn
2 fconstmpt × 0 = x 0
3 2 eqcomi x 0 = × 0
4 3 fveq2i 2 x 0 = 2 × 0
5 itg20 2 × 0 = 0
6 4 5 eqtri 2 x 0 = 0
7 0re 0
8 6 7 eqeltri 2 x 0
9 8 rgenw k 0 3 2 x 0
10 noel ¬ x
11 10 intnanr ¬ x 0 0 i k
12 11 iffalsei if x 0 0 i k 0 i k 0 = 0
13 12 eqcomi 0 = if x 0 0 i k 0 i k 0
14 13 a1i x 0 = if x 0 0 i k 0 i k 0
15 14 mpteq2dva x 0 = x if x 0 0 i k 0 i k 0
16 eqidd x 0 i k = 0 i k
17 dm0 dom =
18 17 a1i dom =
19 10 intnan ¬ x
20 19 pm2.21i x x = 0
21 15 16 18 20 isibl 𝐿 1 MblFn k 0 3 2 x 0
22 21 mptru 𝐿 1 MblFn k 0 3 2 x 0
23 1 9 22 mpbir2an 𝐿 1