Metamath Proof Explorer


Theorem ibliccsinexp

Description: sin^n on a closed interval is integrable. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Assertion ibliccsinexp A B N 0 x A B sin x N 𝐿 1

Proof

Step Hyp Ref Expression
1 iccssre A B A B
2 ax-resscn
3 1 2 sstrdi A B A B
4 3 sselda A B x A B x
5 4 3adantl3 A B N 0 x A B x
6 5 sincld A B N 0 x A B sin x
7 simpl3 A B N 0 x A B N 0
8 6 7 expcld A B N 0 x A B sin x N
9 eqid x sin x N = x sin x N
10 9 fvmpt2 x sin x N x sin x N x = sin x N
11 5 8 10 syl2anc A B N 0 x A B x sin x N x = sin x N
12 11 eqcomd A B N 0 x A B sin x N = x sin x N x
13 12 mpteq2dva A B N 0 x A B sin x N = x A B x sin x N x
14 nfmpt1 _ x x sin x N
15 nfcv _ x sin
16 sincn sin : cn
17 16 a1i A B N 0 sin : cn
18 simp3 A B N 0 N 0
19 15 17 18 expcnfg A B N 0 x sin x N : cn
20 3 3adant3 A B N 0 A B
21 14 19 20 cncfmptss A B N 0 x A B x sin x N x : A B cn
22 13 21 eqeltrd A B N 0 x A B sin x N : A B cn
23 cniccibl A B x A B sin x N : A B cn x A B sin x N 𝐿 1
24 22 23 syld3an3 A B N 0 x A B sin x N 𝐿 1