Metamath Proof Explorer


Theorem iblidicc

Description: The identity function is integrable on any closed interval. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Hypotheses iblidicc.a φ A
iblidicc.b φ B
Assertion iblidicc φ x A B x 𝐿 1

Proof

Step Hyp Ref Expression
1 iblidicc.a φ A
2 iblidicc.b φ B
3 iccssre A B A B
4 1 2 3 syl2anc φ A B
5 ax-resscn
6 4 5 sstrdi φ A B
7 ssid
8 cncfmptid A B x A B x : A B cn
9 6 7 8 sylancl φ x A B x : A B cn
10 cniccibl A B x A B x : A B cn x A B x 𝐿 1
11 1 2 9 10 syl3anc φ x A B x 𝐿 1