Metamath Proof Explorer


Theorem ibliooicc

Description: If a function is integrable on an open interval, it is integrable on the corresponding closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ibliooicc.1 φ A
ibliooicc.2 φ B
ibliooicc.3 φ x A B C 𝐿 1
ibliooicc.4 φ x A B C
Assertion ibliooicc φ x A B C 𝐿 1

Proof

Step Hyp Ref Expression
1 ibliooicc.1 φ A
2 ibliooicc.2 φ B
3 ibliooicc.3 φ x A B C 𝐿 1
4 ibliooicc.4 φ x A B C
5 ioossicc A B A B
6 5 a1i φ A B A B
7 1 2 iccssred φ A B
8 1 rexrd φ A *
9 2 rexrd φ B *
10 icc0 A * B * A B = B < A
11 8 9 10 syl2anc φ A B = B < A
12 11 biimpar φ B < A A B =
13 12 difeq1d φ B < A A B A B = A B
14 0dif A B =
15 0ss A B
16 14 15 eqsstri A B A B
17 13 16 eqsstrdi φ B < A A B A B A B
18 ssid A B A B A B A B
19 8 adantr φ A B A *
20 9 adantr φ A B B *
21 simpr φ A B A B
22 iccdifioo A * B * A B A B A B = A B
23 19 20 21 22 syl3anc φ A B A B A B = A B
24 18 23 sseqtrid φ A B A B A B A B
25 17 24 2 1 ltlecasei φ A B A B A B
26 prssi A B A B
27 1 2 26 syl2anc φ A B
28 prfi A B Fin
29 ovolfi A B Fin A B vol * A B = 0
30 28 27 29 sylancr φ vol * A B = 0
31 ovolssnul A B A B A B A B vol * A B = 0 vol * A B A B = 0
32 25 27 30 31 syl3anc φ vol * A B A B = 0
33 6 7 32 4 itgss3 φ x A B C 𝐿 1 x A B C 𝐿 1 A B C dx = A B C dx
34 33 simpld φ x A B C 𝐿 1 x A B C 𝐿 1
35 3 34 mpbid φ x A B C 𝐿 1