Step |
Hyp |
Ref |
Expression |
1 |
|
ibliooicc.1 |
|
2 |
|
ibliooicc.2 |
|
3 |
|
ibliooicc.3 |
|
4 |
|
ibliooicc.4 |
|
5 |
|
ioossicc |
|
6 |
5
|
a1i |
|
7 |
1 2
|
iccssred |
|
8 |
1
|
rexrd |
|
9 |
2
|
rexrd |
|
10 |
|
icc0 |
|
11 |
8 9 10
|
syl2anc |
|
12 |
11
|
biimpar |
|
13 |
12
|
difeq1d |
|
14 |
|
0dif |
|
15 |
|
0ss |
|
16 |
14 15
|
eqsstri |
|
17 |
13 16
|
eqsstrdi |
|
18 |
|
ssid |
|
19 |
8
|
adantr |
|
20 |
9
|
adantr |
|
21 |
|
simpr |
|
22 |
|
iccdifioo |
|
23 |
19 20 21 22
|
syl3anc |
|
24 |
18 23
|
sseqtrid |
|
25 |
17 24 2 1
|
ltlecasei |
|
26 |
|
prssi |
|
27 |
1 2 26
|
syl2anc |
|
28 |
|
prfi |
|
29 |
|
ovolfi |
|
30 |
28 27 29
|
sylancr |
|
31 |
|
ovolssnul |
|
32 |
25 27 30 31
|
syl3anc |
|
33 |
6 7 32 4
|
itgss3 |
|
34 |
33
|
simpld |
|
35 |
3 34
|
mpbid |
|