Metamath Proof Explorer


Theorem iblioosinexp

Description: sin^n on an open integral is integrable. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Assertion iblioosinexp A B N 0 x A B sin x N 𝐿 1

Proof

Step Hyp Ref Expression
1 ioossicc A B A B
2 1 a1i A B N 0 A B A B
3 ioombl A B dom vol
4 3 a1i A B N 0 A B dom vol
5 iccssre A B A B
6 ax-resscn
7 5 6 sstrdi A B A B
8 7 sselda A B x A B x
9 8 3adantl3 A B N 0 x A B x
10 9 sincld A B N 0 x A B sin x
11 simpl3 A B N 0 x A B N 0
12 10 11 expcld A B N 0 x A B sin x N
13 ibliccsinexp A B N 0 x A B sin x N 𝐿 1
14 2 4 12 13 iblss A B N 0 x A B sin x N 𝐿 1