Metamath Proof Explorer


Theorem iblitg

Description: If a function is integrable, then the S.2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses iblitg.1 φ G = x if x A 0 T T 0
iblitg.2 φ x A T = B i K
iblitg.3 φ x A B 𝐿 1
iblitg.4 φ x A B V
Assertion iblitg φ K 2 G

Proof

Step Hyp Ref Expression
1 iblitg.1 φ G = x if x A 0 T T 0
2 iblitg.2 φ x A T = B i K
3 iblitg.3 φ x A B 𝐿 1
4 iblitg.4 φ x A B V
5 1 adantr φ K G = x if x A 0 T T 0
6 2 adantlr φ K x A T = B i K
7 iexpcyc K i K mod 4 = i K
8 7 oveq2d K B i K mod 4 = B i K
9 8 fveq2d K B i K mod 4 = B i K
10 9 ad2antlr φ K x A B i K mod 4 = B i K
11 6 10 eqtr4d φ K x A T = B i K mod 4
12 11 ibllem φ K if x A 0 T T 0 = if x A 0 B i K mod 4 B i K mod 4 0
13 12 mpteq2dv φ K x if x A 0 T T 0 = x if x A 0 B i K mod 4 B i K mod 4 0
14 5 13 eqtrd φ K G = x if x A 0 B i K mod 4 B i K mod 4 0
15 14 fveq2d φ K 2 G = 2 x if x A 0 B i K mod 4 B i K mod 4 0
16 oveq2 k = K mod 4 i k = i K mod 4
17 16 oveq2d k = K mod 4 B i k = B i K mod 4
18 17 fveq2d k = K mod 4 B i k = B i K mod 4
19 18 breq2d k = K mod 4 0 B i k 0 B i K mod 4
20 19 anbi2d k = K mod 4 x A 0 B i k x A 0 B i K mod 4
21 20 18 ifbieq1d k = K mod 4 if x A 0 B i k B i k 0 = if x A 0 B i K mod 4 B i K mod 4 0
22 21 mpteq2dv k = K mod 4 x if x A 0 B i k B i k 0 = x if x A 0 B i K mod 4 B i K mod 4 0
23 22 fveq2d k = K mod 4 2 x if x A 0 B i k B i k 0 = 2 x if x A 0 B i K mod 4 B i K mod 4 0
24 23 eleq1d k = K mod 4 2 x if x A 0 B i k B i k 0 2 x if x A 0 B i K mod 4 B i K mod 4 0
25 eqidd φ x if x A 0 B i k B i k 0 = x if x A 0 B i k B i k 0
26 eqidd φ x A B i k = B i k
27 25 26 4 isibl2 φ x A B 𝐿 1 x A B MblFn k 0 3 2 x if x A 0 B i k B i k 0
28 3 27 mpbid φ x A B MblFn k 0 3 2 x if x A 0 B i k B i k 0
29 28 simprd φ k 0 3 2 x if x A 0 B i k B i k 0
30 29 adantr φ K k 0 3 2 x if x A 0 B i k B i k 0
31 4nn 4
32 zmodfz K 4 K mod 4 0 4 1
33 31 32 mpan2 K K mod 4 0 4 1
34 4m1e3 4 1 = 3
35 34 oveq2i 0 4 1 = 0 3
36 33 35 eleqtrdi K K mod 4 0 3
37 36 adantl φ K K mod 4 0 3
38 24 30 37 rspcdva φ K 2 x if x A 0 B i K mod 4 B i K mod 4 0
39 15 38 eqeltrd φ K 2 G