Step |
Hyp |
Ref |
Expression |
1 |
|
iblitg.1 |
|
2 |
|
iblitg.2 |
|
3 |
|
iblitg.3 |
|
4 |
|
iblitg.4 |
|
5 |
1
|
adantr |
|
6 |
2
|
adantlr |
|
7 |
|
iexpcyc |
|
8 |
7
|
oveq2d |
|
9 |
8
|
fveq2d |
|
10 |
9
|
ad2antlr |
|
11 |
6 10
|
eqtr4d |
|
12 |
11
|
ibllem |
|
13 |
12
|
mpteq2dv |
|
14 |
5 13
|
eqtrd |
|
15 |
14
|
fveq2d |
|
16 |
|
oveq2 |
|
17 |
16
|
oveq2d |
|
18 |
17
|
fveq2d |
|
19 |
18
|
breq2d |
|
20 |
19
|
anbi2d |
|
21 |
20 18
|
ifbieq1d |
|
22 |
21
|
mpteq2dv |
|
23 |
22
|
fveq2d |
|
24 |
23
|
eleq1d |
|
25 |
|
eqidd |
|
26 |
|
eqidd |
|
27 |
25 26 4
|
isibl2 |
|
28 |
3 27
|
mpbid |
|
29 |
28
|
simprd |
|
30 |
29
|
adantr |
|
31 |
|
4nn |
|
32 |
|
zmodfz |
|
33 |
31 32
|
mpan2 |
|
34 |
|
4m1e3 |
|
35 |
34
|
oveq2i |
|
36 |
33 35
|
eleqtrdi |
|
37 |
36
|
adantl |
|
38 |
24 30 37
|
rspcdva |
|
39 |
15 38
|
eqeltrd |
|