Metamath Proof Explorer


Theorem ibllem

Description: Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014)

Ref Expression
Hypothesis ibllem.1 φ x A B = C
Assertion ibllem φ if x A 0 B B 0 = if x A 0 C C 0

Proof

Step Hyp Ref Expression
1 ibllem.1 φ x A B = C
2 1 breq2d φ x A 0 B 0 C
3 2 pm5.32da φ x A 0 B x A 0 C
4 3 ifbid φ if x A 0 B B 0 = if x A 0 C B 0
5 1 adantrr φ x A 0 C B = C
6 5 ifeq1da φ if x A 0 C B 0 = if x A 0 C C 0
7 4 6 eqtrd φ if x A 0 B B 0 = if x A 0 C C 0