Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
iblmbf
Next ⟩
iblitg
Metamath Proof Explorer
Ascii
Unicode
Theorem
iblmbf
Description:
An integrable function is measurable.
(Contributed by
Mario Carneiro
, 7-Jul-2014)
Ref
Expression
Assertion
iblmbf
⊢
F
∈
𝐿
1
→
F
∈
MblFn
Proof
Step
Hyp
Ref
Expression
1
df-ibl
⊢
𝐿
1
=
f
∈
MblFn
|
∀
k
∈
0
…
3
∫
2
⁡
x
∈
ℝ
⟼
⦋
ℜ
⁡
f
⁡
x
i
k
/
y
⦌
if
x
∈
dom
⁡
f
∧
0
≤
y
y
0
∈
ℝ
2
1
ssrab3
⊢
𝐿
1
⊆
MblFn
3
2
sseli
⊢
F
∈
𝐿
1
→
F
∈
MblFn