Metamath Proof Explorer


Theorem iblmbf

Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014)

Ref Expression
Assertion iblmbf F 𝐿 1 F MblFn

Proof

Step Hyp Ref Expression
1 df-ibl 𝐿 1 = f MblFn | k 0 3 2 x f x i k / y if x dom f 0 y y 0
2 1 ssrab3 𝐿 1 MblFn
3 2 sseli F 𝐿 1 F MblFn