Metamath Proof Explorer


Theorem iblmulc2

Description: Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgmulc2.1 φ C
itgmulc2.2 φ x A B V
itgmulc2.3 φ x A B 𝐿 1
Assertion iblmulc2 φ x A C B 𝐿 1

Proof

Step Hyp Ref Expression
1 itgmulc2.1 φ C
2 itgmulc2.2 φ x A B V
3 itgmulc2.3 φ x A B 𝐿 1
4 iblmbf x A B 𝐿 1 x A B MblFn
5 3 4 syl φ x A B MblFn
6 1 2 5 mbfmulc2 φ x A C B MblFn
7 ifan if x A 0 C B i k C B i k 0 = if x A if 0 C B i k C B i k 0 0
8 1 adantr φ x A C
9 5 2 mbfmptcl φ x A B
10 8 9 mulcld φ x A C B
11 10 adantlr φ k 0 3 x A C B
12 ax-icn i
13 ine0 i 0
14 elfzelz k 0 3 k
15 14 ad2antlr φ k 0 3 x A k
16 expclz i i 0 k i k
17 12 13 15 16 mp3an12i φ k 0 3 x A i k
18 expne0i i i 0 k i k 0
19 12 13 15 18 mp3an12i φ k 0 3 x A i k 0
20 11 17 19 divcld φ k 0 3 x A C B i k
21 20 recld φ k 0 3 x A C B i k
22 0re 0
23 ifcl C B i k 0 if 0 C B i k C B i k 0
24 21 22 23 sylancl φ k 0 3 x A if 0 C B i k C B i k 0
25 24 rexrd φ k 0 3 x A if 0 C B i k C B i k 0 *
26 max1 0 C B i k 0 if 0 C B i k C B i k 0
27 22 21 26 sylancr φ k 0 3 x A 0 if 0 C B i k C B i k 0
28 elxrge0 if 0 C B i k C B i k 0 0 +∞ if 0 C B i k C B i k 0 * 0 if 0 C B i k C B i k 0
29 25 27 28 sylanbrc φ k 0 3 x A if 0 C B i k C B i k 0 0 +∞
30 0e0iccpnf 0 0 +∞
31 30 a1i φ k 0 3 ¬ x A 0 0 +∞
32 29 31 ifclda φ k 0 3 if x A if 0 C B i k C B i k 0 0 0 +∞
33 32 adantr φ k 0 3 x if x A if 0 C B i k C B i k 0 0 0 +∞
34 7 33 eqeltrid φ k 0 3 x if x A 0 C B i k C B i k 0 0 +∞
35 34 fmpttd φ k 0 3 x if x A 0 C B i k C B i k 0 : 0 +∞
36 reex V
37 36 a1i φ V
38 1 abscld φ C
39 38 adantr φ x C
40 9 abscld φ x A B
41 9 absge0d φ x A 0 B
42 elrege0 B 0 +∞ B 0 B
43 40 41 42 sylanbrc φ x A B 0 +∞
44 0e0icopnf 0 0 +∞
45 44 a1i φ ¬ x A 0 0 +∞
46 43 45 ifclda φ if x A B 0 0 +∞
47 46 adantr φ x if x A B 0 0 +∞
48 fconstmpt × C = x C
49 48 a1i φ × C = x C
50 eqidd φ x if x A B 0 = x if x A B 0
51 37 39 47 49 50 offval2 φ × C × f x if x A B 0 = x C if x A B 0
52 ovif2 C if x A B 0 = if x A C B C 0
53 8 9 absmuld φ x A C B = C B
54 53 ifeq1da φ if x A C B C 0 = if x A C B C 0
55 38 recnd φ C
56 55 mul01d φ C 0 = 0
57 56 ifeq2d φ if x A C B C 0 = if x A C B 0
58 54 57 eqtr3d φ if x A C B C 0 = if x A C B 0
59 52 58 syl5eq φ C if x A B 0 = if x A C B 0
60 59 mpteq2dv φ x C if x A B 0 = x if x A C B 0
61 51 60 eqtrd φ × C × f x if x A B 0 = x if x A C B 0
62 61 fveq2d φ 2 × C × f x if x A B 0 = 2 x if x A C B 0
63 47 fmpttd φ x if x A B 0 : 0 +∞
64 2 3 iblabs φ x A B 𝐿 1
65 40 41 iblpos φ x A B 𝐿 1 x A B MblFn 2 x if x A B 0
66 64 65 mpbid φ x A B MblFn 2 x if x A B 0
67 66 simprd φ 2 x if x A B 0
68 abscl C C
69 absge0 C 0 C
70 elrege0 C 0 +∞ C 0 C
71 68 69 70 sylanbrc C C 0 +∞
72 1 71 syl φ C 0 +∞
73 63 67 72 itg2mulc φ 2 × C × f x if x A B 0 = C 2 x if x A B 0
74 62 73 eqtr3d φ 2 x if x A C B 0 = C 2 x if x A B 0
75 38 67 remulcld φ C 2 x if x A B 0
76 74 75 eqeltrd φ 2 x if x A C B 0
77 76 adantr φ k 0 3 2 x if x A C B 0
78 10 abscld φ x A C B
79 78 rexrd φ x A C B *
80 10 absge0d φ x A 0 C B
81 elxrge0 C B 0 +∞ C B * 0 C B
82 79 80 81 sylanbrc φ x A C B 0 +∞
83 30 a1i φ ¬ x A 0 0 +∞
84 82 83 ifclda φ if x A C B 0 0 +∞
85 84 adantr φ x if x A C B 0 0 +∞
86 85 fmpttd φ x if x A C B 0 : 0 +∞
87 86 adantr φ k 0 3 x if x A C B 0 : 0 +∞
88 20 releabsd φ k 0 3 x A C B i k C B i k
89 11 17 19 absdivd φ k 0 3 x A C B i k = C B i k
90 elfznn0 k 0 3 k 0
91 90 ad2antlr φ k 0 3 x A k 0
92 absexp i k 0 i k = i k
93 12 91 92 sylancr φ k 0 3 x A i k = i k
94 absi i = 1
95 94 oveq1i i k = 1 k
96 1exp k 1 k = 1
97 15 96 syl φ k 0 3 x A 1 k = 1
98 95 97 syl5eq φ k 0 3 x A i k = 1
99 93 98 eqtrd φ k 0 3 x A i k = 1
100 99 oveq2d φ k 0 3 x A C B i k = C B 1
101 78 recnd φ x A C B
102 101 adantlr φ k 0 3 x A C B
103 102 div1d φ k 0 3 x A C B 1 = C B
104 89 100 103 3eqtrd φ k 0 3 x A C B i k = C B
105 88 104 breqtrd φ k 0 3 x A C B i k C B
106 80 adantlr φ k 0 3 x A 0 C B
107 breq1 C B i k = if 0 C B i k C B i k 0 C B i k C B if 0 C B i k C B i k 0 C B
108 breq1 0 = if 0 C B i k C B i k 0 0 C B if 0 C B i k C B i k 0 C B
109 107 108 ifboth C B i k C B 0 C B if 0 C B i k C B i k 0 C B
110 105 106 109 syl2anc φ k 0 3 x A if 0 C B i k C B i k 0 C B
111 iftrue x A if x A if 0 C B i k C B i k 0 0 = if 0 C B i k C B i k 0
112 111 adantl φ k 0 3 x A if x A if 0 C B i k C B i k 0 0 = if 0 C B i k C B i k 0
113 iftrue x A if x A C B 0 = C B
114 113 adantl φ k 0 3 x A if x A C B 0 = C B
115 110 112 114 3brtr4d φ k 0 3 x A if x A if 0 C B i k C B i k 0 0 if x A C B 0
116 115 ex φ k 0 3 x A if x A if 0 C B i k C B i k 0 0 if x A C B 0
117 0le0 0 0
118 117 a1i ¬ x A 0 0
119 iffalse ¬ x A if x A if 0 C B i k C B i k 0 0 = 0
120 iffalse ¬ x A if x A C B 0 = 0
121 118 119 120 3brtr4d ¬ x A if x A if 0 C B i k C B i k 0 0 if x A C B 0
122 116 121 pm2.61d1 φ k 0 3 if x A if 0 C B i k C B i k 0 0 if x A C B 0
123 7 122 eqbrtrid φ k 0 3 if x A 0 C B i k C B i k 0 if x A C B 0
124 123 ralrimivw φ k 0 3 x if x A 0 C B i k C B i k 0 if x A C B 0
125 36 a1i φ k 0 3 V
126 85 adantlr φ k 0 3 x if x A C B 0 0 +∞
127 eqidd φ k 0 3 x if x A 0 C B i k C B i k 0 = x if x A 0 C B i k C B i k 0
128 eqidd φ k 0 3 x if x A C B 0 = x if x A C B 0
129 125 34 126 127 128 ofrfval2 φ k 0 3 x if x A 0 C B i k C B i k 0 f x if x A C B 0 x if x A 0 C B i k C B i k 0 if x A C B 0
130 124 129 mpbird φ k 0 3 x if x A 0 C B i k C B i k 0 f x if x A C B 0
131 itg2le x if x A 0 C B i k C B i k 0 : 0 +∞ x if x A C B 0 : 0 +∞ x if x A 0 C B i k C B i k 0 f x if x A C B 0 2 x if x A 0 C B i k C B i k 0 2 x if x A C B 0
132 35 87 130 131 syl3anc φ k 0 3 2 x if x A 0 C B i k C B i k 0 2 x if x A C B 0
133 itg2lecl x if x A 0 C B i k C B i k 0 : 0 +∞ 2 x if x A C B 0 2 x if x A 0 C B i k C B i k 0 2 x if x A C B 0 2 x if x A 0 C B i k C B i k 0
134 35 77 132 133 syl3anc φ k 0 3 2 x if x A 0 C B i k C B i k 0
135 134 ralrimiva φ k 0 3 2 x if x A 0 C B i k C B i k 0
136 eqidd φ x if x A 0 C B i k C B i k 0 = x if x A 0 C B i k C B i k 0
137 eqidd φ x A C B i k = C B i k
138 136 137 10 isibl2 φ x A C B 𝐿 1 x A C B MblFn k 0 3 2 x if x A 0 C B i k C B i k 0
139 6 135 138 mpbir2and φ x A C B 𝐿 1