Step |
Hyp |
Ref |
Expression |
1 |
|
itgcnval.1 |
|
2 |
|
itgcnval.2 |
|
3 |
|
iblmbf |
|
4 |
2 3
|
syl |
|
5 |
4 1
|
mbfmptcl |
|
6 |
5
|
renegd |
|
7 |
6
|
breq2d |
|
8 |
7 6
|
ifbieq1d |
|
9 |
8
|
mpteq2dva |
|
10 |
5
|
iblcn |
|
11 |
2 10
|
mpbid |
|
12 |
11
|
simpld |
|
13 |
5
|
recld |
|
14 |
13
|
iblre |
|
15 |
12 14
|
mpbid |
|
16 |
15
|
simprd |
|
17 |
9 16
|
eqeltrd |
|
18 |
6
|
negeqd |
|
19 |
13
|
recnd |
|
20 |
19
|
negnegd |
|
21 |
18 20
|
eqtrd |
|
22 |
21
|
breq2d |
|
23 |
22 21
|
ifbieq1d |
|
24 |
23
|
mpteq2dva |
|
25 |
15
|
simpld |
|
26 |
24 25
|
eqeltrd |
|
27 |
5
|
negcld |
|
28 |
27
|
recld |
|
29 |
28
|
iblre |
|
30 |
17 26 29
|
mpbir2and |
|
31 |
5
|
imnegd |
|
32 |
31
|
breq2d |
|
33 |
32 31
|
ifbieq1d |
|
34 |
33
|
mpteq2dva |
|
35 |
11
|
simprd |
|
36 |
5
|
imcld |
|
37 |
36
|
iblre |
|
38 |
35 37
|
mpbid |
|
39 |
38
|
simprd |
|
40 |
34 39
|
eqeltrd |
|
41 |
31
|
negeqd |
|
42 |
36
|
recnd |
|
43 |
42
|
negnegd |
|
44 |
41 43
|
eqtrd |
|
45 |
44
|
breq2d |
|
46 |
45 44
|
ifbieq1d |
|
47 |
46
|
mpteq2dva |
|
48 |
38
|
simpld |
|
49 |
47 48
|
eqeltrd |
|
50 |
27
|
imcld |
|
51 |
50
|
iblre |
|
52 |
40 49 51
|
mpbir2and |
|
53 |
27
|
iblcn |
|
54 |
30 52 53
|
mpbir2and |
|