Metamath Proof Explorer


Theorem iblposlem

Description: Lemma for iblpos . (Contributed by Mario Carneiro, 31-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses iblrelem.1 φ x A B
iblpos.2 φ x A 0 B
Assertion iblposlem φ 2 x if x A 0 B B 0 = 0

Proof

Step Hyp Ref Expression
1 iblrelem.1 φ x A B
2 iblpos.2 φ x A 0 B
3 1 le0neg2d φ x A 0 B B 0
4 2 3 mpbid φ x A B 0
5 4 adantrr φ x A 0 B B 0
6 simprr φ x A 0 B 0 B
7 1 adantrr φ x A 0 B B
8 7 renegcld φ x A 0 B B
9 0re 0
10 letri3 B 0 B = 0 B 0 0 B
11 8 9 10 sylancl φ x A 0 B B = 0 B 0 0 B
12 5 6 11 mpbir2and φ x A 0 B B = 0
13 12 ifeq1da φ if x A 0 B B 0 = if x A 0 B 0 0
14 ifid if x A 0 B 0 0 = 0
15 13 14 eqtrdi φ if x A 0 B B 0 = 0
16 15 mpteq2dv φ x if x A 0 B B 0 = x 0
17 fconstmpt × 0 = x 0
18 16 17 eqtr4di φ x if x A 0 B B 0 = × 0
19 18 fveq2d φ 2 x if x A 0 B B 0 = 2 × 0
20 itg20 2 × 0 = 0
21 19 20 eqtrdi φ 2 x if x A 0 B B 0 = 0