Metamath Proof Explorer


Theorem iblre

Description: Integrability of a real function. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypothesis iblrelem.1 φ x A B
Assertion iblre φ x A B 𝐿 1 x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1

Proof

Step Hyp Ref Expression
1 iblrelem.1 φ x A B
2 1 mbfposb φ x A B MblFn x A if 0 B B 0 MblFn x A if 0 B B 0 MblFn
3 ifan if x A 0 B B 0 = if x A if 0 B B 0 0
4 3 mpteq2i x if x A 0 B B 0 = x if x A if 0 B B 0 0
5 4 fveq2i 2 x if x A 0 B B 0 = 2 x if x A if 0 B B 0 0
6 5 eleq1i 2 x if x A 0 B B 0 2 x if x A if 0 B B 0 0
7 ifan if x A 0 B B 0 = if x A if 0 B B 0 0
8 7 mpteq2i x if x A 0 B B 0 = x if x A if 0 B B 0 0
9 8 fveq2i 2 x if x A 0 B B 0 = 2 x if x A if 0 B B 0 0
10 9 eleq1i 2 x if x A 0 B B 0 2 x if x A if 0 B B 0 0
11 6 10 anbi12i 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A if 0 B B 0 0 2 x if x A if 0 B B 0 0
12 11 a1i φ 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A if 0 B B 0 0 2 x if x A if 0 B B 0 0
13 2 12 anbi12d φ x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 x A if 0 B B 0 MblFn x A if 0 B B 0 MblFn 2 x if x A if 0 B B 0 0 2 x if x A if 0 B B 0 0
14 3anass x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
15 an4 x A if 0 B B 0 MblFn 2 x if x A if 0 B B 0 0 x A if 0 B B 0 MblFn 2 x if x A if 0 B B 0 0 x A if 0 B B 0 MblFn x A if 0 B B 0 MblFn 2 x if x A if 0 B B 0 0 2 x if x A if 0 B B 0 0
16 13 14 15 3bitr4g φ x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 x A if 0 B B 0 MblFn 2 x if x A if 0 B B 0 0 x A if 0 B B 0 MblFn 2 x if x A if 0 B B 0 0
17 1 iblrelem φ x A B 𝐿 1 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
18 0re 0
19 ifcl B 0 if 0 B B 0
20 1 18 19 sylancl φ x A if 0 B B 0
21 max1 0 B 0 if 0 B B 0
22 18 1 21 sylancr φ x A 0 if 0 B B 0
23 20 22 iblpos φ x A if 0 B B 0 𝐿 1 x A if 0 B B 0 MblFn 2 x if x A if 0 B B 0 0
24 1 renegcld φ x A B
25 ifcl B 0 if 0 B B 0
26 24 18 25 sylancl φ x A if 0 B B 0
27 max1 0 B 0 if 0 B B 0
28 18 24 27 sylancr φ x A 0 if 0 B B 0
29 26 28 iblpos φ x A if 0 B B 0 𝐿 1 x A if 0 B B 0 MblFn 2 x if x A if 0 B B 0 0
30 23 29 anbi12d φ x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1 x A if 0 B B 0 MblFn 2 x if x A if 0 B B 0 0 x A if 0 B B 0 MblFn 2 x if x A if 0 B B 0 0
31 16 17 30 3bitr4d φ x A B 𝐿 1 x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1