Step |
Hyp |
Ref |
Expression |
1 |
|
iblsplitf.X |
|
2 |
|
iblsplitf.vol |
|
3 |
|
iblsplitf.u |
|
4 |
|
iblsplitf.c |
|
5 |
|
iblsplitf.a |
|
6 |
|
iblsplitf.b |
|
7 |
|
nfcv |
|
8 |
|
nfcsb1v |
|
9 |
|
csbeq1a |
|
10 |
7 8 9
|
cbvmpt |
|
11 |
|
simpr |
|
12 |
|
nfv |
|
13 |
1 12
|
nfan |
|
14 |
4
|
adantlr |
|
15 |
14
|
ex |
|
16 |
13 15
|
ralrimi |
|
17 |
|
rspcsbela |
|
18 |
11 16 17
|
syl2anc |
|
19 |
9
|
equcoms |
|
20 |
19
|
eqcomd |
|
21 |
8 7 20
|
cbvmpt |
|
22 |
21 5
|
eqeltrid |
|
23 |
8 7 20
|
cbvmpt |
|
24 |
23 6
|
eqeltrid |
|
25 |
2 3 18 22 24
|
iblsplit |
|
26 |
10 25
|
eqeltrid |
|